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Introduction

Consider the enigma of complex intermetallic crystal struc-
tures, thermodynamically stable atomic arrangements with
hundreds or even thousands of atoms within the unit cell.
Characteristic examples are Li21Si5, Mg44Rh7, and Al69Ta39,
compounds that crystallize in the F4̄3m space group, with
large numbers in their stoichiometric ratios and correspond-
ingly large unit cells. Is there some pattern to these complex
crystal structures that eludes the casual observer, but which
can explain essential features of their structures?

In this paper we will uncover one such pattern. The start-
ing point will be diffraction. We shall find that the diffrac-
tion patterns of the above structures contain a pseudo-ten-
fold symmetry with an attached paradox. The mystery will
not be that tenfold diffraction symmetry is incompatible
with crystalline symmetry; that peculiarity has already been
explored in the context of quasicrystal approximants.[1] The
paradox we refer to is a simpler one.
The compounds Li21Si5, Mg44Rh7, and Al69Ta39 all adopt

cubic crystal structures with pseudo-fivefold symmetry along
the [110] direction. In cubic symmetry, the [110] direction
has five other symmetry-equivalent directions. These com-
pounds therefore have pseudo-fivefold symmetry axes along
[110], [11̄0], [011], [01 1̄], [101], and [10 1̄]: three pairs of
perpendicular pseudo-fivefold axes. The paradox is that no
three-dimensional point group contains a single pair of per-
pendicular fivefold symmetry axes, let alone three such
pairs.
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Abstract: The structures of eight relat-
ed known intermetallic structure types
are the impetus to this paper: Li21Si5,
Mg44Rh7, Zn13 ACHTUNGTRENNUNG(Fe,Ni)2, Mg6Pd, Na6Tl,
Zn91Ir11, Li13Na29Ba19, and Al69Ta39. All
belong to the F4̄3m space group, have
roughly 400 atoms in their cubic unit
cells, are built up at least partially from
the g-brass structure, and exhibit
pseudo-tenfold symmetric diffraction
patterns. These pseudo-tenfold axes lie
in the h110i directions, and thus pres-
ent a paradox. The h110i set is com-
prised of three pairs of perpendicular
directions. Yet no 3D point group con-
tains a single pair of perpendicular fi-
vefold axes (by FriedelFs Law, a five-
fold axis leads to a tenfold diffraction
pattern). The current work seeks to re-

solve this paradox. Its resolution is
based on the largest of all 4D Platonic
solids, the 600-cell. We first review the
600-cell, building an intuition discus-
sing 4D polyhedroids (4D polytopes).
We then show that the positions of
common atoms in the F4̄3m structures
lie close to the positions of vertices in a
3D projection of the 600-cell. For this
purpose, we develop a projection
method that we call intermediate pro-
jection. The introduction of the 600-
cell resolves the above paradox. This

4D Platonic solid contains numerous
orthogonal fivefold rotations. The six
fivefold directions that are best pre-
served after projection prove to lie
along the h110i directions of the F4̄3m
structures. Finally, this paper shows
that at certain ideal projected cluster
sizes related to one another by the
golden mean (t= (1+

p
5)/2), construc-

tive interference leading to tenfold dif-
fraction patterns is optimized. It is
these optimal values that predominate
in actual F4̄3m structures. Explicit
comparison of experimental cluster
sizes and theoretically derived cluster
sizes shows a clear correspondence,
both for isolated and crystalline pairs
of projected 600-cells.

Keywords: higher dimension ·
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The solution to this paradox is simple yet unexpected.
While there are no three-dimensional (3D) point groups
with perpendicular fivefold symmetries, there are four-di-
mensional (4D) point groups with orthogonal fivefold sym-
metries. The common atomic sites of these F4̄3m structures
prove to be connected to one such 4D point group. We will
show that the common atomic sites of Li21Si5, Mg44Rh7, and
Al69Ta39 lie at the 3D-projected points of a very symmetrical
4D object. It is this 4D object that has exact orthogonal five-
fold symmetries. Of course, these fivefold symmetry opera-
tions are no longer exact once projected into 3D space;
however, after projection, enough of their fivefold symmetry
is retained that a pseudo-tenfold symmetric diffraction pat-
tern (tenfold due to the pseudo-fivefold symmetry coupled
with FriedelFs Law[2]) is observed even in three dimensions.
This paper therefore begins with the observation of

pseudo-tenfold diffraction symmetry in the aforementioned
crystal structures. It then examines those atoms in these
crystal structures principally responsible for the observed
pseudo-tenfold diffraction symmetry.
At this point we begin our analysis of 4D objects. We will

show that 4D objects can be understood through 3D images
of them, in much the same way that ordinary two-dimen-
sional (2D) images are used to understand 3D solids. We
will therefore consider 3D images of a particular 4D
object—an object with perpendicular fivefold symmetry. We
show that this object, once projected into 3D space, retains
a pseudo-tenfold diffraction symmetry.
We find that at certain ideal configurations and sizes,

these diffraction images are optimal. Connecting these
mathematical ideas to the actual reality of the true Li21Si5,
Mg44Rh7, and Al69Ta39 crystal structures, we find that the
atoms of these crystal structures lie near sites of the project-
ed 4D object, and therefore exhibit pseudo-tenfold diffrac-
tion symmetry. At the same time, they have interatomic dis-
tances that optimize constructive interference in their dif-
fraction patterns.
The story we create builds upon the observations of

others. While the types of structures we describe—interme-
tallic crystal structures with regions consisting entirely of
close-packed, slightly distorted tetrahedra—have a rich his-
tory of efforts to catalogue and systematize their geome-
tries,[3–9] we will mention only the observations most directly
relevant to this paper. First among these was the realization
by Samson and co-workers[10–13] that large cubic intermetallic
structures such as NaCd2 and Cd3Cu4 contain a pseudo-five-
fold symmetry perpendicular to their crystallographic h110i
directions. This same pseudo-fivefold symmetry was later
observed by Khare and co-workers[14] for the g-brass struc-
ture, and it was pointed out that the axes were inconsistent
with those in known quasicrystals and quasicrystal approx-
imants.1 Later came the observation by Nyman, Andersson,
Hyde, and others[17,18,19] that the g-brass structure, among
other tetrahedrally close-packed structures, is one in which

the edge-capped stella quadrangula plays a central role. (We
review the edge-capped stella quadrangula later in this
paper for readers unfamiliar with it.) And finally, there is
the more recent work of Sadoc and Mosseri,[20,21] who recog-
nized that the fundamental clusters of structures such as
Cr3Si, a-Mn, and g-brass bear a clear relationship with the
4D Platonic solid, the 600-cell. All of these observations are
fundamentally connected and, as we hope to show for the
Li21Si5, Mg44Rh7, and Al69Ta39 structures, tell different as-
pects of a single unified story.

Results and Discussion

Large F4̄3m intermetallic structures

Description of their structures : Seven structure types listed
in PearsonFs Handbook of Crystallographic Data for Inter-
metallic Compounds[22] in the space group F4̄3m contain ap-
proximately 400 atoms in their unit cells. Compounds for
which X-ray single crystal data sets have been recorded and
solved include Li21Si5,

[23, 24] Zn21Pt5,
[25,26] Cu41Sn11,

[27, 28]

Mg44Rh7,
[29] Zn39Fe11,

[30] Mg44Ir7,
[31] Zn13 ACHTUNGTRENNUNG(Fe,Ni)2,

[32] Mg6Pd,
[13]

Mg29Ir4,
[33] Na6Tl,

[12] Zn91Ir11,
[34] Li13Na29Ba19,

[35] and
Al69Ta39.

[36] To varying degrees, these structure types are all
based on a simpler parent structure, g-brass.[37] In this paper
we will restrict our attention to the above 13 solved crystal
structures. (Of a total of 15 known to us, these 13 bear the
simplest connection to the g-brass structure.) We review the
essential features of this simpler structure first.
The g-brass structure is illustrated in Figure 1a. The struc-

ture is a cubic I-centered arrangement of the 26-atom clus-
ter shown in this figure, a cluster composed of four distinct
sites: IT (inner tetrahedron), OT (outer tetrahedron), OH
(octahedron), and CO (cuboctahedron). In accord with the
I-centering condition, there are two of these 26-atom clus-
ters per cubic unit cell.

Figure 1. Two atomic clusters common to the F4̄3m intermetallic struc-
tures: a) the 26-atom g-brass cluster and b) the 29-atom a-Mn cluster.
Clusters are shown as nested polyhedra, with each crystallographic site
represented by a color (inner tetrahedron (IT) or cluster center (CC):
yellow; outer tetrahedron (OT): orange; octahedron (OH) or truncated
tetrahedron (TT): red; and cuboctahedron (CO): purple).

1 Although there are differences between the h110i and h1t0i directions,
Dong and others[15,16] have analyzed the relationships between g-brasses
and approximants of icosahedral and decagonal quasicrystals.

Chem. Eur. J. 2008, 14, 3908 – 3930 G 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org 3909

FULL PAPER

www.chemeurj.org


The simplest of the large unit-celled F4̄3m structures,
Li21Si5, Zn21Pt5, and Cu41Sn11, are 2P2P2 ordered super-
structures of g-brass. The a, b, and c axes of these crystals
are each twice as long as the corresponding axis length in g-
brass; these crystalsF unit cells therefore have eight times
the volume of g-brass. Instead of two 26-atom clusters per
unit cell, there are 16.
All of these structures are F-centered, which requires

each cluster to have three translationally equivalent clusters,
and hence these 16 clusters can be reduced to four transla-
tionally inequivalent ones. In the space group F4̄3m, these
four clusters are also not related by any point-group opera-
tion. They are all crystallographically unique.
Specifying the atomic site positions (and the atom types)

of these four clusters identifies these structures. In Figure 2,

we show the four crystallographically inequivalent clusters
of Li21Si5. The four clusters lie inside a single primitive unit
cell. As this picture further shows, the four inequivalent
clusters lie in a cubic cell at (0,0,0), (14,

1
4,
1
4), (

1
2,
1
2,
1
2), and (

3
4,
3
4,
3
4).

We will refer to these four clusters as the Z, Q, H, and T
clusters, the clusters being at zero, a quarter, a half, and
three-quarters of the cell dimension, respectively.
As Figure 2 shows, differences exist between the four clus-

ters: in Li21Si5, the Si atoms occupy different positions in the
different clusters (for the Z and Q clusters the Si atoms lie
on the OT sites, while for the H and T clusters they lie on
the OH sites).2 However, in the F4̄3m family of structures,
clusters can differ to an even greater extent. Clusters can
have radically different atomic sites. One such different clus-
ter is illustrated in Figure 1b. This cluster, found in Zn91Ir11,
does not have any atoms at either the IT or OH sites, but in-
stead has atoms at the center of the cluster (CC) and in a
truncated tetrahedron (TT). This new cluster type is gener-
ally referred to as an a-Mn cluster, due to its similarity to
the principal constituent cluster of that structure type.[38]

Other cluster types with descriptive names such as Ti2Ni,
bcc, and fcc (so named because of clear connections to these
parent structures) also exist.3 However, all cluster types are
composed of just the six aforementioned types of atomic
sites (CC, IT, OT, OH, TT, and CO). There are always four
crystallographically inequivalent clusters located at Z, Q, H,
and T. All sites can therefore comfortably be labeled with a
three-letter designation: for example, HTT would refer to a
truncated tetrahedral site centered at (12,

1
2,
1
2). In this article,

these three-letter designations will prove more useful than
the traditional names based on descriptive names such as a-
Mn or Ti2Ni.
In this paper, we will consider eight structure types (as we

shall see, our definition of structure type will be slightly dif-
ferent from the standard definition). We will consider only
those structures that are traditionally considered to contain
a g-brass cluster. This includes 13 of the 15 F4̄3m 2P2P2
compounds known to us for which a single-crystal structure
has been solved.4

Pseudo-tenfold diffraction along the [1 1̄0] direction : In
Figure 3, we show single-crystal X-ray diffraction images[42]

for two of the F4̄3m family of structures, Zn39Fe11 and
Na29Li13Ba19. (We have chosen these two structures as they
are the two structures where pseudo-tenfold symmetry is
strongest, but as the Supporting Information illustrates,
pseudo-tenfold diffraction is present in the remaining mem-
bers of the family.) In Figure 3, we show reflections orthogo-
nal to the [1 1̄0] direction. We show only the most intense
peaks.
The diffraction images of Figure 3 exhibit a pseudo-ten-

fold symmetry. Diffraction spots appear in two distinct rings.
For the inner ring, strong reflections include 660, 555, and
228; for the outer ring, they include 10100, 888, and 3313.
These hkl indices belong to an understandable general pat-
tern related to the Fibonacci sequence.
Recall in the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13,…),

each number is the sum of the two previous numbers of the
sequence. Let us call a given Fibonacci sequence number hi,
the numbers preceding and following this number then
being hi�1. Consider now the set of hkl reflections,
(2hi,2hi,0), (hi+1,hi+1,hi+1), and (hi�1,hi�1,hi+2) (we use
commas and parentheses here for the sake of clarity). The
rings of peaks previously mentioned then correspond to the
sets in which hi are 3 and 5, respectively. (For example for
hi=3, these peaks correspond to (2hi,2hi,0)=660, (hi+1,hi+

1,hi+1)=555, and (hi�1,hi�1,hi+2)=228.) The connection to
the Fibonacci sequence will prove to run deeper than the

Figure 2. The four crystallographically inequivalent g-brass clusters in
Li21Si5 (Li: red; Si: blue), shown in both the primitive unit cell (black)
and the cubic unit cell (cyan). The clusters are centered in the cubic cell
at Z (0,0,0), Q (14,

1
4,
1
4), H (

1
2,
1
2,
1
2), and T (

3
4,
3
4,
3
4).

2 In addition, there is an interesting variation among the orientations of
the various clusters in Li21Si5. As careful examination of Figure 2
shows, the orientation of the inner tetrahedron of the H cluster is in-
verted with respect to the orientations of the Z, Q, and T clusters.

3 These alternate names are important in their own right. We have re-
cently shown, for example, that the Ti2Ni cluster plays a fundamental
role in understanding quantum calculations on the Mg44Rh7 struc-
ture.[39]

4 The remaining two structures, Zn20.44Mo
[40] and Cd45Sm11,

[41] contain
clusters based on the body-centered cubic (bcc) structure. While the
ideas of this paper can be applied to the remaining two structures
(recall that g-brass is itself a defect bcc structure), the inclusion of
these structures would require several multipage excursions, of a length
suited perhaps for another full article.
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above observations, but in order to appreciate these connec-
tions we will need a number of additional concepts.
How is it that different structure types with differing

atomic positions can all exhibit pseudo-fivefold symmetry?
A suggestive clue to the answer to this question is given in
Table 1, which lists relative intensities of the six most intense
symmetry-inequivalent diffraction peaks of Zn39Fe11 and

Na29Li13Ba19. These peaks belong to the two previously dis-
cussed rings of pseudo-tenfold diffraction. As this table
shows, peaks within a given ring are not uniform in intensity.

This lack of uniformity provides a measure of the incom-
pleteness of the tenfold symmetry.
In this same table, we also give the calculated intensities

using only those atomic positions shared across the full
family of F4̄3m structures (there are 12 such positions). Re-
stricting the diffraction pattern to these common atoms im-
proves the uniformity in diffraction intensities: it also im-
proves overall pseudo-tenfold symmetry. Not shown, but
equally true, is that this restriction improves the diffraction
symmetry of the full family of F4̄3m structures. We there-
fore conclude that the origin of the pseudo-tenfold symme-
try lies in the common atoms.
Trying to understand the common atoms brings us to the

heart of this paper. It is a heart that involves geometrical
concepts of a sort not familiar to most of us. The very per-
pendicularity of the pseudo-fivefold axes, coupled with the
absence of any 3D point group with perpendicular fivefold
axes, forces unusual geometrical concepts upon us.
We shall see that the key idea will be the introduction of

a fictitious fourth dimension. This fourth dimension will
have a number of concrete uses. It will allow us to create
perpendicular fivefold axes that perfectly align with the
h110i directions of these crystals. It will also allow us to
create a continuous array of perfectly regular face-sharing
tetrahedra, a geometrical array which many of us know
cannot be achieved in three dimensions.

Four-dimensional (4D) Platonic solids

Projected views of three-dimensional (3D) Platonic solids :
The 4D geometry we will use is connected to 4D Platonic
solids. Such 4D Platonic solids may seem at first a forbid-
ding topic, but as we hope to show, many of the same tricks
used to understand 3D Platonic solids can be applied to 4D
Platonic solids. In particular, we note that much of our un-
derstanding of 3D objects is based on 2D pictures of them.
We have trained ourselves to look at these 2D pictures and
convert them in our minds into 3D solids. In exactly the
same way, in this article we will consider 3D images of 4D
solids and use our minds to turn these 3D images into repre-
sentations of a true 4D object.
We begin by considering ordinary 3D Platonic solids, 3D

polyhedra in which all vertices, edges, and faces are identi-
cal. In this article, we consider four of the five 3D Platonic
solids: the tetrahedron, the octahedron, the dodecahedron,
and the icosahedron. These Platonic solids are illustrated in
Figure 4. The tetrahedron is of Td point-group symmetry,
the octahedron of Oh symmetry, and the dodecahedron and
icosahedron of Ih symmetry. Furthermore, the dodecahedron
and icosahedron are duals of each other: atoms placed at
the center of the faces of one polyhedron lie at the vertices
of the other polyhedron.
We begin our account by carefully considering the views

of these Platonic solids along their symmetry axes. (As we
shall see, 4D Platonic solids are also most clearly viewed
down their symmetry axes.) In Figure 5, we show the octahe-
dron down its fourfold axis and the dodecahedron down its

Figure 3. Simulated single-crystal X-ray diffraction patterns of a) Zn39Fe11
and b) Na29Li13Ba19, viewed in the [1 1̄ 0] direction. Only the brightest
peaks are shown: they exhibit a striking pseudo-tenfold symmetry. As all
the strongest reflections are normal to the h110i directions, this figure re-
veals all the most intense peaks of these structures. See Table 1.

Table 1. Strongest X-ray reflection intensities. Diffraction data calculated
by Cerius2[42] for CuKa radiation for 2q ranging from 0 to 1108. The
Li13Na29Ba19 16 16 0 reflection is among the most intense peaks. It corre-
sponds to the third ring in which hi=8. See text.

Zn39Fe11 Li13Na29Ba19
Reflection All

atoms
Common
sites

Reflection All
atoms

Common
sites

6 6 0 100 100 6 6 0 79 94
5 5 5 40 50 5 5 5 52 58
2 2 8 54 65 2 2 8 55 61
10 10 0 67 84 10 10 0 100 100
8 8 8 58 72 8 8 8 78 88
3 3 13 22 33 3 3 13 59 71
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five-, three-, and twofold axes. Each of these views will
teach us general principles useful in understanding 4D
solids.
We begin with the octahedron. The octahedron is com-

posed of six vertices and eight faces, but only five of its ver-
tices and four of its faces are visible in Figure 5. The reason
is evident; upon projection into the plane of the picture,
half of the polyhedron is obscured by the other half.
We may view this missing half from two very different

viewpoints. If we are to view Figure 5a as a picture of a real
3D octahedron, we then assume that the other half of the
octahedron is hidden from view, but actually exists as the
underside of the polyhedron. Equally relevant, however, is
another more 2D perspective. Imagine that Figure 5a actual-
ly represents a true 2D object (a 2D object created by pro-
jecting the 3D octahedron into the 2D space). From this
viewpoint, only one-half of the 3D octahedron has been suc-
cessfully projected into 2D space. The other half cannot be
successfully projected as this would force vertices to be pro-

jected into the interior of the first half. If vertices are to
become atoms, such a mapping would place atoms at chemi-
cally unreasonable distances with respect to other atoms.
A similar distinction will take place with 3D projections

of a 4D Platonic solid. In some cases, vertices will be pres-
ent, but hidden by the upper side of the 3D polyhedron. In
other cases, some atoms will not be projected, as such pro-
jection would place the new atoms into the interior volume
already occupied by other projected atoms. In this paper, we
will refer to the former as vertices (or atoms) hidden from
view, and the latter as atoms in the shadow of other atoms.
Further important features can be extracted from the

three views of the dodecahedron. We begin with the fivefold
view, Figure 5b. Just 15 of the vertices and six of the faces of
the dodecahedron can be seen in this view. Of the six visible
pentagons, only the central pentagon appears perfectly regu-
lar, while the remaining five take on a somewhat com-
pressed shape (although in the 3D polyhedron, they are just
as regular as the central pentagon).
The compressed aspect of the outer pentagons has two

components to it. First, the projected area of the com-
pressed pentagons is smaller than that of the central penta-
gon. Second, the edges of the polyhedron that lie at the
sharpest angle with respect to the plane of the picture are
somewhat shorter in appearance. Both components will
later prove important in understanding 4D Platonic solids.
The threefold view of the dodecahedron, Figure 5c, tells a

similar story. Only six of the pentagonal faces are visible,
the central three of which take on a distinctly more regular
appearance than the outer three, the outer three pentagons
having both significantly less area and (as some of the outer
pentagonsF edges are fairly perpendicular to the plane of the
picture) significantly shortened edge lengths.
Of especial interest is the dodecahedron viewed down the

twofold axis, Figure 5d. At first glance only four of the pen-
tagonal faces can be seen, the central two of which take on
the most regular appearance. In this view, however, there
are four additional pentagonal faces that lie at the periphery
of the projected view. These additional four pentagons are
exactly orthogonal to the plane of the paper. The projected
area of these pentagons is exactly zero; these four perpen-
dicular polygons take on the appearance of line segments.
(For the sake of clarity, one of these orthogonal pentagons
is shown in red in Figure 5d.)
In this view, there are four additional faces that lie com-

pletely hidden by the visible faces. The number of hidden
faces exactly equals the number of visible faces. This equali-
ty is not an accident. A dodecahedron has inversion symme-
try. Upon inversion, the visible faces switch places with the
hidden faces. The four peripheral faces that appeared as
simple line segments in Figure 5d are equally pertinent here.
The centers of the four peripheral faces lie exactly halfway
between the visible and the hidden faces. If we were to use
the terminology of a sphere, the four visible faces lie in one
hemisphere, the four hidden faces in the other hemisphere,
and the center of the four peripheral faces lie exactly on the
equator.

Figure 4. Four of the five 3D Platonic solids: the a) tetrahedron, b) octa-
hedron, c) dodecahedron, and d) icosahedron.

Figure 5. Various 3D polyhedra viewed down their symmetry axes. a) An
octahedron viewed down its fourfold axis, and a dodecahedron viewed
down its b) fivefold, c) threefold, and d) twofold axes (with a pentagonal
face that appears as a line segment shown in red).
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We see finally one additional point that will later prove
useful in understanding 4D solids. Whenever the direction
of the projection is perpendicular (i.e. , normal) to a given
face, the given face preserves its symmetry upon projection.
Thus, the fivefold view of the dodecahedron in Figure 5 is
exactly normal to the central pentagonal face of the projec-
tion. It is therefore only in this fivefold view that the pen-
tagonal symmetry of the original dodecahedron is perfectly
preserved.

Identical vertices, edges, faces, and polyhedra : Before giving
actual 3D images of 4D solids, we need to make some gen-
eral observations about 4D Platonic solids. Our observations
begin with lower-dimensional Platonic solids: regular poly-
gons and regular polyhedra. Regular polygons are 2D ob-
jects with identical vertices (which are 0D) and identical
edges (which are 1D). For 3D regular polyhedra, there is
the additional requirement of identical faces (which are
2D). The salient point here is that in moving from 2D poly-
gons to 3D polyhedra, we have added just one new compo-
nent to our geometric description, the face, and that this
new component is of one higher dimension than the highest
dimension of the remaining components (the vertices and
the edges).
It should therefore not be surprising that 4D Platonic

solids will consist of identical vertices (0D), edges (1D),
faces (2D), and polyhedra (3D). The polyhedra which are
the constituent parts of a 4D solid are traditionally referred
to as cells. (The 4D solids themselves are called 4D poly-
topes or polyhedroids.[43,44]) There are just six 4D Platonic
solids,[45,46] of which three will be discussed in this article.
We may approach our understanding of 4D Platonic

solids in a second, we hope, intuitive manner. Again, intu-
ition needs to be based on our understanding of lower-di-
mensional Platonic solids. A 2D Platonic solid, a regular
polygon, is composed of vertex-sharing (vertices are 0D)
line segments (lines are 1D) that are each canted with re-
spect to each other and which wrap together around an area
(an area is 2D). A 3D Platonic solid is composed of edge-
sharing (edges are 1D) polygons (polygons are 2D) that are
canted with respect to each other and which wrap together
around a volume (a volume is 3D). By analogy, we infer a
4D Platonic solid is composed of face-sharing (faces are 2D)
polyhedra (polyhedra are 3D) that are canted with respect
to each other and which wrap around a (fictitious) hypervo-
lume (the hypervolume being 4D).

The 16-cell : The eight points (�1,0,0,0), (0,�1,0,0), (0,0,�
1,0), and (0,0,0,�1) prove to be the vertices of one of the
six 4D Platonic solids. Each of these points can be thought
of as a 4D vector. Distances between pairs of vertices are
therefore readily calculable. Each vertex has six nearest
neighbors (for simplicity we shall say nearest-neighbor verti-
ces are bonded to one another): for example, the point
(1,0,0,0) has the six points (0,�1,0,0), (0,0,�1,0), and
(0,0,0,�1) at a distance of p2 away from it. As there are
eight vertices, six bonds per vertex, and each bond is shared

by two vertices, there are 24 bonds (24= (8P6)/2) in this
polyhedroid (4D solid).
Both vertices of a pair of nearest neighbors (e.g., (1,0,0,0)

and (0,1,0,0)) are mutually bonded to exactly four other ver-
tices (in this case, (0,0,�1,0) and (0,0,0,�1)). As each of
these last four vertices is bonded to both of the originally
bonded atoms, there are therefore four triangles of bonded
atoms. The original bond lies simultaneously on four trian-
gular faces. As there are 24 bonds, four triangles that share
a common bond, and as a triangle is always composed of
three bonds, there are 32 triangular faces (32= (24P4)/3) in
this polyhedroid.
Consider one triangle of bonded atoms (e.g., (1,0,0,0),

(0,1,0,0), and (0,0,1,0)). There prove to be exactly two verti-
ces that are bonded to all three vertices of a bonded trian-
gle. In the current example, the pair of vertices at (0,0,0,�
1) are both bonded to all three vertices of the triangle.
Either of these last vertices, together with the initial triangle
of bonded vertices, forms a tetrahedron. There are therefore
exactly two tetrahedra that share a common triangular face.
As there are 32 triangular faces, two tetrahedra that share a
common face, and as a tetrahedron always has four faces,
there are 16 tetrahedra (16= (32P2)/4) in this polyhedroid.
It will also prove useful to know the number of tetrahedra

that share a common vertex. To calculate this number, we
note that (the number of vertices)P(the number of tetrahe-
dra which share a given vertex)/(the number of vertices per
tetrahedron)= the number of tetrahedra in the polyhedroid.
There are eight vertices in the polyhedroid, four vertices per
tetrahedron, and 16 tetrahedra in the 4D solid. Applying the
above formula we find 8Pn/4=16, in which n equals the
number of tetrahedra that share a common vertex. We
therefore find that the number of tetrahedra which share a
common vertex is eight.
In summary, every vertex is shared by eight tetrahedra,

every bond is shared by four triangles, and every face is
shared by two tetrahedra. In addition, the number of verti-
ces is eight, edges (or bonds) 24, faces (or triangles) 32, and
cells (or tetrahedra) 16. These last numbers obey the 4D
Euler relation:[46] (number of vertices)�(number of edges)+
(number of faces)�(number of polyhedra)=0, as 8�24+

32�16=0. All vertices, edges, faces, and polyhedra (cells)
are identical. The object described above is therefore a 4D
Platonic solid. It is commonly referred to as the 16-cell, as it
is composed of 16 tetrahedral cells.

Three-dimensional (3D) projections of the 16-cell : We now
show our first picture of the 16-cell. Our picture will be a
3D projection of this 4D polyhedroid. Our picture perforce
will be two-dimensional (2D) in nature, but unlike many lit-
erature pictures, will be based on standard 3D crystal graph-
ics packages. Chemists are so experienced at viewing the
output of 3D crystal graphics packages, we will be able to
consider these pictures as being 3D in nature. (As a further
aid, we include stereograms of some of these same pictures
in the Supporting Information.) It will therefore be easy to
envision these pictures as representing 3D-projected solids,
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and furthermore to recognize that the projected vertices and
edges could be seen as actual atomic site positions and
bonds.
To create a 3D-projected image of the 4D 16-cell, we

need to decide upon the direction (or view) of the projec-
tion. We will use the symmetry of the 16-cell coupled with
insights based on 2D projections of 3D solids to guide our
choice. Consider again the fivefold view of the dodecahe-
dron, Figure 5b. We can think of this view as emanating
from the choice of the central pentagonal face of this figure.
As this pentagon is 2D, exactly one dimension less than the
complete dodecahedron, this face is normal to a unique per-
pendicular axis. As Figure 5 shows, if we choose a projected
view that is along this perpendicular axis, the fivefold sym-
metry remains perfectly preserved even after projection.
We use this same technique for the 16-cell. In this case,

we need to consider not just a central 2D face, but a central
3D cell (polyhedron). In 4D space, there will be a unique di-
rection perpendicular to the 3D space defined by this cell.
We can choose this direction as the direction of projection.
We will therefore choose one of 16 tetrahedra in the 16-cell
to be the central cell, and choose the direction of projection
to be perpendicular to this tetrahedron. By analogy to the
preserved fivefold symmetry of the dodecahedron in Fig-
ure 5b, this projected 3D image of the 4D 16-cell will pre-
serve the symmetry of the central tetrahedron.
In Figure 6, we show this projected view. We choose for

this illustration a view that places the central tetrahedron

along its threefold axis, Figure 6a. Recall that each triangu-
lar face of the 16-cell is shared by two tetrahedra. Thus each
of the triangular faces must belong to a second tetrahedron
besides the central tetrahedron. These second tetrahedra
can be seen by placing an additional capping atom on each
of the triangular faces of the initial tetrahedron.
One of the triangular faces of the central tetrahedron is

hidden from view by the other triangles. Down the threefold

view, its capping atom will not be visible; however, the three
remaining capping atoms will be visible and are shown in
Figure 6b. Each of these capping atoms taken together with
their neighboring triangle of bonded vertices forms an addi-
tional requisite tetrahedron. These tetrahedra are somewhat
compressed (this is especially clear in the stereograms in the
Supporting Information). We can understand this compres-
sion in light of our earlier observation, that as one proceeds
away from the center of the projection, faces and cells often
become more and more compressed.
The four central tetrahedral atoms together with the four

capping atoms make a total of eight atoms. As described in
the last section, there are exactly eight atoms in the 16-cell.
We have therefore considered all the vertices of this polyhe-
droid; however, we have not as yet considered all the tetra-
hedral cells.
Additional tetrahedra can be found betwixt the seven visi-

ble vertices of Figure 6b. There are four such tetrahedra.
Three of these new tetrahedra emanate from a pair of
atoms of the central tetrahedron coupled with a pair of the
capping atoms (these new tetrahedra are edge-sharing with
respect to the central tetrahedron), Figure 6c. A final tetra-
hedron is formed by a central tetrahedral atom (the one at
the center of the picture) together with all three of the visi-
ble capping atoms, Figure 6d. All these additional tetrahedra
are compressed after 3D projection.
There are therefore eight tetrahedra to be found in

Figure 6 (8=1+3+3+1). All eight of these tetrahedra
have the central atom of the threefold projection as one of
their constituent atoms. We recall from the last section that
every vertex is shared by exactly eight tetrahedra. Figure 6
therefore illustrates all the tetrahedra that share the central
atom of the threefold projection.
There are of course 16 tetrahedra in the 16-cell. Only

eight of its tetrahedra are seen in Figure 6. The reason for
this can be traced to the lone capping atom that lies hidden
from view by the other atoms. As this lone atom is also
shared by eight tetrahedra, there must be eight tetrahedra
not visible in Figure 6. These eight missing tetrahedra, to-
gether with the eight tetrahedra which we have previously
described, account for all 16 tetrahedra of this polyhedroid.

The projected 120-cell : We now consider 4D Platonic solids
that contain fivefold symmetry. It may come as no surprise
that such polyhedroids are 4D analogues of the dodecahe-
dron and the icosahedron. We begin with a 4D Platonic
solid that contains dodecahedral cells. The actual coordi-
nates of this solid are given in the Supporting Information.
Here we will simply describe a 3D projection of this polyhe-
droid. As the polyhedroid we are about to describe is com-
posed of 120 identical dodecahedra, it is traditionally re-
ferred to as the 120-cell.
Recall that in making a projection, we need to choose a

direction of projection. We choose this direction in the can-
onical way, by designating one of the dodecahedra of the
120-cell the central one, and finding the direction perpendic-
ular to this dodecahedron. This projection, as well as the 3D

Figure 6. A Td 3D projection of the 16-cell. a) The central tetrahedral
cell. Central tetrahedron with b) face-sharing, c) edge-sharing, and d)
vertex-sharing tetrahedra highlighted in cyan. Central tetrahedral verti-
ces: black; capping tetrahedral vertices: red spheres. Capping vertices are
slightly displaced for the sake of clarity (see Appendix).
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coordinates it generates, are given in the Supporting Infor-
mation. In this section, we will just give a descriptive view
of the projected solid.
In Figure 7a, we illustrate (in green) the centrally project-

ed dodecahedron viewed down a fivefold axis. In the 120-
cell, each of the pentagonal faces of this dodecahedron is

capped by another dodecahedron.5 As there are 12 penta-
gons in a given dodecahedron, the central dodecahedron is
capped by 12 additional dodecahedra. These 12 additional
dodecahedra are partially illustrated in Figure 7b (11 of the

12 dodecahedra are visible, and are illustrated in gray, cyan,
and blue).
There are numerous exposed pentagonal faces among the

11 visible dodecahedra of Figure 7b. In the 120-cell, there
are capping dodecahedra on each of these pentagonal faces.
To create this next shell of dodecahedra, we observe that
there are two types of symmetry-inequivalent exposed pen-
tagons in Figure 7b. Most exposed, and sitting directly
above one of the pentagonal faces of the central dodecahe-
dron, are 12 pentagons, all perfectly regular in appearance.
One of these pentagons lies at the center of Figure 7b. We
will place new exposed dodecahedra so that they perfectly
cap these 12 regular pentagons.
There is, however, a second type of less exposed pentago-

nal face, which sits in the indentations of the illustrated clus-
ter. These indented pentagonal faces appear in groups of
three. One such grouping has been placed in the center of
the view in Figure 7c. These threefold groupings of pentago-
nal faces provide the underside of a new set of dodecahedra.
As there are 20 such indentations, there will be 20 new in-
dented dodecahedra.
The vertices belonging to these two additional types of

dodecahedra are shown in Figure 7d–e. For the sake of clari-
ty, we have grouped these vertices as a spherical framework,
while retaining the form of the 13 central dodecahedra as
opaque polyhedra. In Figure 7d, we orient the figure along
the fivefold axis. In the center of this figure, one of the new
exposed dodecahedra can be seen. In Figure 7e, we rotate
the perspective so that one of the indented dodecahedra lies
at the center.
In Figure 7f, we illustrate these new dodecahedra by turn-

ing the indented dodecahedra into opaque objects (in
yellow, orange, and purple, with no two adjacent indented
dodecahedra being the same color). This figure illustrates
not just the so-called indented dodecahedra, but, as indent-
ed dodecahedra share faces with the so-called exposed do-
decahedra, the exposed dodecahedra as well. As this figure
shows, both exposed and indented dodecahedra are signifi-
cantly compressed after 3D projection (stereograms are
given in the Supporting Information).
Even more interesting is yet a fourth view of the project-

ed solid, Figure 7g. In this perspective, we rotate the poly-
hedron of Figure 7f so that four coplanar pentagons lie at
the center of the picture. The appearance of these four pen-
tagons should be directly compared with the four pentagons
visible in the twofold view of an ordinary 3D dodecahedron,
Figure 5d. Comparison shows that these four pentagons are
identical in appearance. As we shall see, this identical ap-
pearance is not accidental. Rather, dodecahedra from the
4D 120-cell polyhedroid have become so compressed under
projection into the 3D world that they have become abso-
lutely flat, and have been reduced to being just four copla-
nar pentagons in appearance.
It turns out there are 30 of these absolutely flat dodecahe-

dra, each lying directly above one of the bonds of the cen-
tral dodecahedron. At this point we have described 75 do-
decahedra: the one central one, its 12 nearest neighbors, the

Figure 7. An Ih 3D projection of half of the 120-cell, a 4D polyhedroid.
From center outward, a) a central dodecahedral cell (green), b) fivefold
and c) threefold views of the 12 dodecahedral cells that are face-sharing
to the central cell (gray, cyan, and blue), d) fivefold and e) threefold
views outlining a layer of 32 dodecahedral cells that are face-sharing to
the central 13 cells (red mesh), f) a view of the 32 cells with one cell type
opaque (orange, yellow, and purple), and g) a twofold view of f) with one
of the equatorial layer of 30 completely flattened dodecahedral cells
highlighted in thick red cylinders.

5 As mentioned previously, each face in a polyhedroid is always shared
by two and only two polyhedra. This is analogous to the 3D case, in
which each edge of a polyhedron is always shared by two and only two
faces.
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12 exposed dodecahedra, the 20 indented ones, and the 30
completely flat dodecahedra (75=1+12+12+20+30). As
the name of the 120-cell implies, there are 45 remaining do-
decahedra (45=120–75).
These remaining dodecahedra turn out to all lie in the

shadow of the 75 other dodecahedra. Recall that cells in the
shadow of other cells are polyhedra that, were they to be
projected, would lie in the volumes already occupied by
other polyhedra. The twofold 2D projection of the 3D do-
decahedron is relevant here. In this earlier case, four of the
12 2D pentagonal faces are visible, four of the 2D faces
have been reduced to 1D line segments, and four of the 2D
faces lie in the shadow of the other faces.
Something very similar occurs in the projected 120-cell.

Of the 120 3D dodecahedra, 45 of the dodecahedra project
nicely (though are at times somewhat compressed) into 3D
space, 30 of the dodecahedra project into 2D coplanar pen-
tagons, and 45 of the dodecahedra lie in the shadow of the
other dodecahedra.
Let us call a 4D sphere a spheroid. This spheroid can be

divided into two equally sized hemispheroids. These hemi-
spheroids, like the initial spheroid, are 4D in nature in just
the same way that hemispheres, like spheres, are 3D. In our
example, 45 dodecahedra lie in one hemispheroid and are
projected into 3D space, 45 dodecahedra lie in the other
hemispheroid (in the shadow of the first) and are not pro-
jected, and 30 dodecahedra lie between the two hemisphe-
roids.
Recalling that the abutting points between the two 3D

hemispheres of a sphere form a 2D circle, the equator, the
points abutting these two 4D hemispheroids will also have a
well-defined shape. Instead of an equatorial circle, this
shape is an equatorial sphere. The centers of the 30 flat do-
decahedra lie on this equatorial sphere.
This terminology helps us further understand the pictures

in Figure 7d–g. In these pictures, the outermost vertices
appear to lie on a sphere. This sphere is near the equatorial
sphere to which the previous paragraph refers. This is impor-
tant. In any 3D projection of a 4D polyhedroid, we need not
consider any further cells once we reach the equatorial
sphere; all further cells will lie in the shadow of the other
cells, and cells which lie on the equatorial sphere are readily
identified because they are always flat.

The 600-cell : We now turn to the 600-cell, the 4D Platonic
solid with the greatest number of cells, and the polyhedroid
that is most relevant to the current paper. 600 is a daunting
number. Fortunately, there is a simple relation between the
600-cell and the 120-cell: the two are duals of each other.
The 600-cell and the 120-cell therefore lie in the same rela-
tion to one another as do the icosahedron and dodecahe-
dron. In 3D, two polyhedra are duals of each other if the
points at the centers of the faces of one polyhedron lie at
the vertices of the other polyhedron.
Something analogous will happen for dual polyhedroids:

the points at the centers of the cells of one polyhedroid lie
at the vertices of the other polyhedroid. Thus, the dual of

the 120-cell has a vertex at the center of each of the 120
cells of the 120-cell. The dual of the 120-cell has exactly 120
vertices.
As each cell of the 120-cell has 12 neighboring cells (see

previous section), each vertex in the dual of the 120-cell will
have 12 neighboring vertices. These vertices respect the
original Ih symmetry of the dodecahedron, and form a per-
fect icosahedron around the central vertex. Consider any
one of the 20 triangular faces of this icosahedron. Each of
these faces, together with the center of the icosahedron,
forms a tetrahedron (in 3D this tetrahedron is not perfectly
regular, but in 4D it can be perfectly regular). Thus, if each
vertex of the dual of the 120-cell has an icosahedron of ver-
tices around it, each vertex is shared by 20 tetrahedra.
The following equation holds: (number of vertices)P

(number of tetrahedra which share a common vertex)/
(number of vertices per tetrahedron)= (number of cells).
For the dual of the 120-cell, there are 120 vertices, 20 tetra-
hedra which share a common vertex, and 4 vertices per tet-
rahedron. Therefore, the dual of the 120-cell has exactly 600
cells (600=120P20/4). These cells are all tetrahedra.

Projected 600-cell : We now construct a 3D projection of the
600-cell. We choose the canonical direction for projection,
that is, the one orthogonal to the 3D space defined by one
of the cells of the 600-cell.6 As projected images preserve
the symmetry of the projected cell and as the cells of the
600-cell are tetrahedra, this 3D projection will be of Td sym-
metry. Its central tetrahedron is shown in Figure 8a. Follow-
ing standard intermetallic nomenclature, this central tetrahe-
dron is called the inner tetrahedron (IT).
For all polyhedroids, every face is shared by exactly two

polyhedra. In the 600-cell, every triangular face is therefore
shared by two tetrahedra. Each face of the central tetrahe-
dron in Figure 8a is therefore the face of a second tetrahe-
dron. By placing capping vertices on each face, we generate
the four required additional tetrahedra. As Figure 8b shows,
these four capping vertices themselves lie at the corners of a
larger outer tetrahedron, OT. The polyhedron formed from
both the IT and OT sites is referred to as a stella quadrangu-
la, and is shown in Figure 8c.
The exposed triangular faces of the stella quadrangula are

all symmetry-equivalent, and form pairs of edge-sharing
faces. These faces lie in an indented orientation with respect
to each other. Three such pairs of indented faces are shown
in Figure 8c. By 4̄ symmetry, there are three further pairs of

6 There is another relevant direction for projecting the 600-cell. In this
alternate projection, the center of projection is the volume directly sur-
rounding one of the 120 vertices of the 600-cell. Under such a projec-
tion, the 600-cell projects into an Ih 3D object. This 3D object consists
of a central vertex, surrounded by the 12 vertices of an icosahedron,
followed by the 20 vertices of a dodecahedron, followed by 12 vertices
of a larger icosahedron. Finally come 30 vertices of an icosidodecahe-
dron. This icosidodecahedron lies on the equatorial sphere. This collec-
tion of polyhedra is related to the Bergman cluster of quasicrystalline
fame.[1] This alternate projection is deeply relevant to intermetallic
crystal structures, but structures of a type different from the ones dis-
cussed in the current article; see the Supporting Information.
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indented faces that lie on the underside of the figure. We
place six capping vertices, one above each pair of indented
faces. The six new vertices are shown in Figure 8d. As this
figure shows, the new vertices lie in an octahedron and are
therefore called the octahedral sites, OH.
The exposed triangular faces of the IT-OT-OH cluster

(Figure 8e) are all symmetry-equivalent, and again can be
viewed as being composed of indented edge-sharing faces.
Trios of these edge-sharing faces come together in the form
of corrugated rosettes; one such rosette is at the center of
Figure 8e. Above each pair of indented edge-sharing faces
we place a new capping vertex. As there are three such in-
dented edge-sharing faces per rosette, and four rosettes in
total, there are 12 new capping vertices. These capping verti-
ces form a distorted cuboctahedron (Figure 8f), the CO
sites. The capped cluster composed of the IT-OT-OH-CO
sites is an edge-capped stella quadrangula. A view of the
edge-capped stella quadrangula is given in Figure 8g.
However, the construction is not yet finished; there are

three different kinds of exposed triangular faces in the edge-
capped stella quadrangula. These faces are illustrated in Fig-
ure 8g. The most exposed of the three types of faces is
shown in magenta. Slightly less exposed are faces, edge-shar-
ing to the most exposed faces, shown in blue. Finally, there
are pairs of indented edge-sharing faces, shown in cyan.
We cap the most exposed faces, the less exposed faces,

and the pairs of indented faces with new vertices. As there
are four most exposed faces, 12 less exposed faces, and 12
pairs of indented faces, we place 28 (28=4+12+12) new
vertices onto our cluster. These 28 vertices are drawn as a

shell in Figure 8h. In this figure, we show the 28-vertex shell
and the edge-capped stella quadrangula from three different
perspectives: down the most exposed face (left), less ex-
posed face (middle), and indented faces (right). Atoms cap-
ping respectively the most exposed, less exposed, and in-
dented faces are termed OC (for outer capping), MC (for
middle capping), and IC (for inner or indented capping).
The capping atoms together with the faces beneath the cap-
ping vertices form new tetrahedra. These new tetrahedra
are quite compressed. This compression is particularly clear
in the stereograms given in the Supporting Information.
We now come to the last site of the projected 600-cell.

This site proves to lie exactly on the equatorial sphere of
the 600-cell (for this reason, this site will be called EQ). The
EQ site is most easily seen by recalling that every vertex in
the 600-cell lies in the center of an icosahedron, and that
every vertex of an icosahedron has five neighboring vertices
which lie in a pentagon around it.
Examination of Figure 8h shows that the outer shell of 28

atoms has 12 pentagonal faces. Near the center of these
faces, but just below the plane of these faces, lies a CO
atom. We can now envision that this CO atom, together
with the pentagon of atoms above it, forms the underside of
an extraordinarily compressed icosahedron. We place the
EQ atoms at the center of this compressed icosahedron.
These EQ positions are shown in Figure 8i.
Beyond this point, projected vertices lie in the shadow of

the other points and need not be further considered. In sum-
mary, the interior of the projected 600-cell consists of 54 ver-
tices (4IT+4OT+6OH+12CO+12IC+12MC+4OC=

Figure 8. A Td 3D projection of half of the 600-cell, a 4D polyhedroid. a) A central tetrahedral cell consisting of four IT vertices (yellow), b) four OT ver-
tices capping its faces, c) the new triangular faces formed by the capping with OT (orange), d) six OH vertices capping these faces (red), e) the new tri-
angular faces formed by the capping with OH (pink), f) 12 CO vertices capping these faces (purple), g) the three distinct triangular faces formed by the
capping with CO (magenta, blue and cyan), h) 28 OC, MC, and IC vertices capping these faces (green framework), and i) 12 EQ vertices on the equator
of the 600-cell (blue framework).
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54). On the equatorial sphere lie an additional 12 vertices
(EQ). A further 54 sites lie in the shadow of the above sites,
and are not included in the 3D projection (by symmetry, the
number of shadowed sites exactly equals the number of sites
in the interior of the 3D projection). As 120=54+12+54,
we have accounted for all 120 vertices of the 600-cell.
Of the sites discussed, the first 54 of these 120 vertices

will prove most important for the remainder of this paper.
For the sake of convenience, we term the cluster formed by
these 54 vertices the 54-cluster.

The F4̄3m structures : In the previous section of this paper,
we have seen that the 4D Platonic solid composed of stuffed
icosahedra, the 600-cell, can be projected into a 3D space as
a cluster with 54 interior and 12 equatorial vertices. These
interior sites bear the names IT, OT, OH, CO, IC, MC, and
OC. Earlier in the paper, we saw that the atoms of F4̄3m
structures can be specified by three-letter designations, the
first letter specifying the cluster origin and the final two let-
ters the cluster site (CC, IT, OT, OH, TT, or CO). Most im-
portantly, we see that four of the letter designations of the
projected 600-cell are the same as those for F4̄3m cluster
types: IT, OT, OH, and CO. This is not a duplication of sym-
bols: there is a real connection.

Linear, stereographic, and intermediate projection : To ex-
plore the tie between the 4D 600-cell polyhedroid and our
cubic structures, we need a way to exactly specify the 3D lo-
cation of a given vertex of the projected 600-cell. To do so,
we need to carefully examine what we mean by projection.
The projections we are interested in will always be projec-
tions from 4D space to 3D space. However, as we know
from cartography, there are numerous ways of projecting a
sphere onto a plane: no one of these projections is inherent-
ly better than all others. The same will prove true in projec-
ting the 4D spheroids into 3D space.
Scientists are most familiar with two different types of

projection.7 First, they are familiar with linear projection
(see Appendix), but many of us are also familiar with a
second type of projection, stereographic projection.[49] In
Figure 9a,b, we give schematic views of both linear and ster-
eographic projection. As we are most familiar with 2D maps
based on the 3D globe, these schematics illustrate projection
of 3D space to 2D space. As we shall see, these same ideas
can be applied to projecting 4D space to 3D space.
As Figure 9a shows, we can imagine the hemisphere of a

Platonic solid (in this figure, a dodecahedron) to lie on the
surface of a transparent sphere. We place a light source suf-
ficiently far away from this sphere that rays emanating from
this light source are essentially parallel to one another. In
linear projection, we place a plane normal to these rays of
light on the opposite side of the sphere and locate the
shadow of the Platonic solid.

In stereographic projection, we again consider a single
light source, but this time place it directly on the surface of
the sphere (at the point opposite the projected plane), Fig-
ure 9b. In stereographic projection, unlike linear projection,
no vertices, bonds, or faces lie in the shadow of other verti-
ces, bonds, or faces; however, on a simple level, we tend to
view stereographic projection as more distorted than linear
projection.
On the plus side, both linear and stereographic projection

preserve the fivefold axis directly opposite the light source.
In the examples of Figure 9a,b, the point directly opposite
the light source has fivefold symmetry and both the linear
and stereographic projected images retain fivefold symme-
try.
Bond lengths, however, prove an issue. These problems

can be understood with just one look at Figure 9a,b. In ster-
eographic projection, bond lengths can become unreasona-
bly large toward the outside of the projected image. But
linear projection also has issues, as bonds can become un-
reasonably short toward the outside of the projection.
Bonds exactly parallel to the direction of projection have
their lengths collapse to zero.
As neither stereographic nor linear projection is suitable

for preserving bond lengths, and as uniform bond lengths
are something chemists would like to see in any representa-
tion, we will need to consider new forms of projection. We
wish to choose a method of projection that retains the abili-
ty to preserve the symmetry of the central point of the pro-
jection, and which does a superior job in preserving bond
lengths.
This new method of projection must be equally suited to

3D projection onto a 2D plane, as well as 4D projection into

Figure 9. Schematic views of the three types of projection relevant to this
paper: a) linear projection, b) stereographic projection, and c) intermedi-
ate projection. While bonds become unphysically short toward the out-
side of a linear projection and unphysically long toward the outside of a
stereographic projection, bonds can retain reasonably constant lengths
for a hemisphere with intermediate projection.

7 Other types of projection, of course, exist. In the problem of mapping
the 600-cell from 4D to 3D, various techniques have been used, often
requiring the introduction of disclinations.[47,48]
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3D space. In both cases, we wish to preserve the symmetry
at the center of the projection (for the former at the center
of a 2D polygon, and for the latter at the center of a 3D
polyhedron), while at the same time keeping variation in
bond lengths (for the former for bonds in the 2D plane, and
for the latter for bonds in 3D space) to a minimum.
The chemical entities studied in this paper are based on

the 54-cluster of the projected 600-cell. We will therefore
choose a projection that preserves the Td symmetry of the
54-cluster, and which does a reasonable job in keeping bond
lengths constant.
Our proposed projection is a simple one. We place the

light source at a point intermediate between the location for
stereographic projection (where it lies on the sphere or
spheroid) and linear projection (where it lies infinitely far
away), Figure 9c. As bond lengths become too long in ster-
eographic projection and too short in linear projection, we
thus achieve a happy medium. (The distances can never all
be equal, but one can aim for maximum similarity.)
Least squares optimization of bond lengths shows that for

the 54-cluster (a 4D to 3D projection), a light source 1.9
spheroid diameters away from the center of the projection
preserves distances best (see Appendix). In Table 2, we

compare a variety of bond lengths for linear, stereographic,
and this alternate projection. (The choice of the ten distan-
ces given in Table 2 is not a random one: as we shall later
discuss, these ten bond lengths may be used to derive the
ten site parameters on which the 54-cluster is based.) As
this table shows, bond lengths are much more constant with
the new method. We call this projection method intermedi-
ate projection. The formulas and sites corresponding to the
54-cluster are given in the Appendix to this paper.

F4̄3m structures and 54-clusters : With this choice of projec-
tion in hand, we are ready to establish the connection be-
tween the common atoms of the F4̄3m crystal structures and
the 54-cluster derived from the 600-cell. First, let us get our
bearings in the F4̄3m structures. As we have mentioned pre-
viously, this paper considers only those F4̄3m structures

which contain a g-brass cluster. For ease of comparison, we
convert the coordinates of the reported crystal structures so
that these g-brass clusters are centered at the origin.8 These
converted coordinates are given in the Supporting Informa-
tion.
The g-brass cluster consists of IT, OT, OH, and CO

atoms, and by placing this cluster at the origin, these sites
are labeled ZIT, ZOT, ZOH, and ZCO. (Recall that Z, Q,
H, and T refer to clusters centered at zero, a quarter, a half,
and three-quarters along the cell dimension: the Z in these
labels therefore specifies a cluster centered at the origin.)
We now examine the atoms that lie just outside this cluster.
We turn first to the Li21Si5 structure. As Figure 10 shows,
surrounding the g-brass core are three additional Li sites:
QCO, TCO, and TOT sites.

Table 2. Comparison of projected 54-clusters. The IT�IT distance of 2p2
is arbitrarily chosen. It does, however, correspond roughly to bond
lengths of the F4̄3m structures.

Bond Linear [S] Stereographic [S] Intermediate [S]

IT�IT 2.828 2.828 2.828
OT�IT 2.763 2.933 2.847
OH�IT 2.649 3.004 2.820
CO�IT 2.322 3.135 2.692
CO�OT 2.649 3.251 2.915
IC�OT 2.000 3.501 2.610
IC�CO 2.649 3.736 3.094
MC�OH 1.732 3.773 2.496
MC�CO 2.322 3.929 2.921
OC�CO 2.000 4.070 2.709

mean 2.391 3.416 2.793
std. dev. 0.377 0.445 0.172

Figure 10. A 54-cluster in Li21Si5 where nearest neighbors are bonded to
one another, shown a) by atom type (Li: red, Si: blue) and b) comparison
of a) with an intermediate projection of the 54-cluster (experimental sites
in yellow, projected in cyan). Larger 54-clusters in c) Mg44Rh7 and d)
Li21Si5, also compared to intermediate projections.

8 In the F4̄3m space group, the Z, Q, H, and T sites are the 4a, 4b, 4c,
and 4d special sites all with equal Td symmetry. It is therefore possible
to translate the unit cell so that a g-brass cluster centered at any of
these positions is shifted to lie at the origin. In making such a transla-
tion, we must also pay attention to the orientation of the g-brass clus-
ter. As the g-brass cluster is non-centrosymmetric, there are two possi-
ble orientations. The IT atom is located at (x,x,x); we have chosen this
atom to always lie near (.95,.95,.95), rather than (.05,.05,.05).
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In Figure 10a (right), we draw the shell formed by the
three additional sites. This shell has 28 atoms in it. We recall
that the 54-cluster also contains 28 atoms placed in a shell
around a 26 atom core. In Figure 10b, we directly compare
the 54 atoms based on atoms at ZIT, ZOT, ZOH, ZCO,
QCO, TCO, and TOT (shown in yellow) with the intermedi-
ate projected 54-cluster (shown in cyan). As this figure
shows, the projected 54-cluster has vertices near the actual
atomic sites of Li21Si5. The seven aforementioned sites there-
fore correspond to respectively the seven sites of the 54-
cluster: IT, OT, OH, CO, IC, MC, and OC.
In Table 3, we list the atomic positions for the eight F4̄3m

structure types.9 As this table shows, the eight structure
types contain common sites at the seven aforementioned po-

sitions. All F4̄3m structures therefore contain a 54-cluster
centered at the origin. But Table 3 also reveals additional
sites common to all members of the F4̄3m family of struc-
tures. Can these additional common sites also be traced to
54-clusters?
Let us turn to clusters that might be centered at Q. An ex-

amination of Table 3 shows that only one of the eight struc-
ture types has a QIT atom. As an IT atom is an essential in-
gredient of any 54-cluster, at first glance we might conclude

that there could be no common 54-cluster centered at Q,
but we would be wrong.
The absence of QIT atoms does not imply the absence of

a 54-cluster; rather it means that if there is a 54-cluster cen-
tered at Q, its length scale must be different from the length
scale of the common 54-cluster centered at Z. If we are to
examine Q-centered clusters, we must consider larger dis-
tances. We have not far to look. All eight structure types
contain a QOT site. These QOT atoms also lie in a tetrahe-
dron. The QOT atoms are separated from each other by dis-
tances of approximately the golden mean (t= (1+

p
5)/2)

times a typical metal bond length.
We now proceed to search for the remaining six sites of a

54-cluster. We recall that each of these six sites successively
caps triangular faces formed by
more central atoms. In Fig-
ure 10c, we show the cluster
formed from the QOT, TOT,
TOH, HTT, TOT, TCO, and
HOT sites of the Mg44Rh7
system. We compare the cluster
formed from these sites with
the sites of the intermediate
projected 54-cluster. As this
figure shows, there is fair agree-
ment between the crystal coor-
dinates and the mathematically
constructed 54-cluster.10 The
aforementioned sites therefore
can be thought to correspond
to the IT, OT, OH, CO, IC,
MC, and OC sites of a 54-clus-
ter the nearest-neighbor distan-
ces of which are approximately
t times a standard metal bond
length.
Table 3 shows that seven of

the eight structure types have
the above-mentioned suite of
atoms. However, the Li21Si5
structure, instead of containing
the HTT site, has an HOH site.

In Figure 10d, we show the cluster generated from the same
set of atoms, but in which the HTT site has been replaced
with the HOH site. As this figure shows, this replacement in
no way alters the presence of a 54-cluster.
The 54-clusters centered at Q are quite large with respect

to the primitive unit cell. They are sufficiently large that the
HOH atom in the Li21Si5 structure can provide the IC site

Table 3. Atomic sites of F4̄3m structures. Sites common to all structure types are given in italics. See text for
discussion of HOH and HTT. Li21Si5: Li21Si5, Zn21Pt5, and Cu41Sn11; Mg44Rh7: Mg44Rh7, Zn39Fe11, and Mg44Ir7;
Zn13(Fe, Ni)2; Mg6Pd: Mg6Pd and Mg29Ir4; Na6Tl; Zn91Ir11; Li13Na29Ba19; Al69Ta39. Reference [35] reports a
second HTT site in Li13Na29Ba19.

Li21Si5 Mg44Rh7 Zn13(Fe,Ni)2 Mg6Pd Na6Tl Zn91Ir11 Li13Na29Ba19 Al69Ta39

ZIT ZIT ZIT ZIT ZIT ZIT ZIT ZIT
ZOT ZOT ZOT ZOT ZOT ZOT ZOT ZOT
ZOH ZOH ZOH ZOH ZOH ZOH ZOH ZOH
ZCO ZCO ZCO ZCO ZCO ZCO ZCO ZCO

– – – – – – QCC QCC
QIT – – – – – – –
QOT QOT QOT QOT QOT QOT QOT QOT
QOH QOH QOH QOH QOH QOH – –
QCO QCO QCO QCO QCO QCO QCO QCO
– – – – – – QTT QTT

– – HCC HCC HCC HCC HCC HCC
HIT – – – – HIT – –
HOT HOT HOT HOT HOT HOT HOT HOT
HOH HTT HTT HTT HTT HTT HTT HTT
HCO HCO HCO HCO HCO HCO HCO HCO
– – – – – HOH HTT –

– – TCC – – – – TCC
TIT TIT TIT – TIT TIT TIT TIT
TOT TOT TOT TOT TOT TOT TOT TOT
TOH TOH TOH TOH TOH TOH TOH TOH
TCO TCO TCO TCO TCO TCO TCO TCO

9 For this article, we use Table 3 to define structure types. We assume
two compounds which have the same atomic sites in Table 3 belong to
the same structure type. Thus, elemental ordering over the sites is not
taken into account. Actual elemental ordering is given, however, in the
tables in the Supporting Information.

10 Agreement is fair with the exception of the IC site. This is a general
trend. The IC site is typically the site with the greatest disparity be-
tween mathematically constructed and experimentally observed posi-
tions. Recall that the IC site has highly compressed tetrahedra around
it, and that as it caps two different triangular faces of the edge-capped
stella quadrangula beneath it, the atomic site cannot readily move to
decompress these tetrahedra. For these reasons, the tetrahedra around
the IC atoms are the least regular in appearance and therefore, we sus-
pect, the least ideal.
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for two neighboring 54-clusters. By contrast, in the Zn91Ir11
system the HTT atoms are not shared by neighboring clus-
ters. The former systems therefore require half the number
of IC atoms that the latter systems require. There are six
HOH atoms in an octahedron versus 12 HTT atoms in a
truncated tetrahedron. This change from an HTT site to an
HOH site is therefore exactly what is required if two clus-
ters are to share the same IC site.
As the HOH and HTT sites serve the same function, we

consider for the sake of this paper that they are a common
atomic site. We have used this viewpoint in both Tables 1
and 3. We see that there is a common Q-centered 54-cluster
throughout the F4̄3m family. In exactly the same manner,
we can search for other 54-clusters. There are many to be
found, an average of 4.5 clusters per structure type, the full
list of which are given in Table 4. (In Table 4, we portray the
eight structure types with just six groupings, because two
pairs of structure types, Mg6Pd and Zn13ACHTUNGTRENNUNG(Fe,Ni)2, as well as
Na6Tl and Zn91Ir11, have the exact same list of 54-clusters.)
Table 4, in addition to showing the atomic sites of a given

54-cluster, also attempts to give some measure of the aver-
age distances found in each cluster. As each cluster has

many nearest-neighbor distances, and as the atomic sites at
which the atoms lie are at high-symmetry points, some
thought is called for in the calculation of average distances.
In this paper, we consider the following: IT, OT, and OC

atoms lie at (x,x,x) special positions; OH atoms lie at
(x,0,0); and finally, CO, IC, and MC atoms lie (with the
above-mentioned exception of the HOH site) at (x,x,z) posi-
tions. Therefore, one geometric parameter defines the IT,
OT, OH, and OC positions, while two parameters define the
CO, IC, and MC distances. There are a total of ten parame-
ters needed to define the size and shape of a 54-cluster.
We can therefore define any 54-cluster with the appropri-

ate choice of ten nearest-neighbor distances. We choose
these canonical distances by considering links between a
given atom and atoms more centrally located in the cluster.
The ten distances chosen are IT�IT, OT�IT, OH�IT, CO�
IT, CO�OT, IC�OT, IC�CO, MC�OH, MC�CO, and OC�
CO. In this list, the IT�IT distance defines the single param-
eter of the IT position, the OT�IT bond defines the single
parameter of the OT position, and so forth.
We may directly calculate these ten canonical distances

from knowledge of the ten atomic site parameters. Con-
versely, the ten atomic site parameters can be specified from
the ten canonical distances. While atomic site parameters
are the most typical way to represent atomic positions, the
canonical distances are nonetheless of interest. In intermedi-
ate projection, bond lengths are fairly constant across all
bonds in the 54-cluster. When the canonical bond lengths
are close to each other in value, the atoms will therefore
prove to lie particularly near the positions of an intermedi-
ate projected 54-cluster.
In the Supporting Information, we present canonical near-

est-neighbor distances for all 54-clusters found in the F4̄3m
structures. In Table 4, we present a summary of this data. In
particular, we show the ratio of the a-axis cell length divided
by the average of the ten canonical distances. With this
value, we also show the standard deviation among the ten
canonical bond lengths. As Table 4 shows, for all but one of
the myriad of 54-clusters, calculated ratios are in the range
of either 6.4–6.8 or 3.4–3.9. The former range corresponds
to nearest-neighbor distances at ordinary bond lengths, the
latter to the golden mean times that number.
Table 4 also shows that for the former range, the standard

deviation of bond lengths centers around the value of 0.2 S.
This value can be directly compared to the ideal mathemati-
cal variation of 0.17 S (associated with the intermediate
projection method) shown in Table 2. The actual variation
in bond lengths is not much greater than that which is math-
ematically obtainable. For 54-clusters in the 3.4–3.9 range,
the variation in cluster distances is greater, with the smallest
standard deviations near 0.6 S in value. This more than dou-
bling in standard deviations is partially accounted for by the
increase of the actual cluster distances. However, note that
as there is an average of 4.5 54-clusters per structure type,
but only twenty or so atomic parameters per structure type,
uniformly small standard deviations across all cluster sizes
are difficult to achieve.

Table 4. 54-Clusters in F4̄3m structures. Atoms common to all structure
types are in italics (see also Table 3). Unlike Li21Si5, in Cu41Sn11 the small-
er H cluster is not inverted with respect to the other clusters. Therefore,
IT and OT should be HIT and HOT, respectively.

a/d[a] s[b]

[S]
IT OT OH CO IC MC OC

Li21Si5; Zn21Pt5; Cu41Sn11
Z 6.62 0.12 ZIT ZOT ZOH ZCO QCO TCO TOT
Q 6.62 0.20 QIT QOT QOH QCO HCO ZCO ZOT
H 6.42 0.37 HOT HIT HOH HCO QCO TCO TIT
T 6.64 0.15 TIT TOT TOH TCO ZCO HCO HOT
Z 3.70 0.38 ZOT TOT HOH QOH HOT HCO QOT
Q 3.81 0.29 QOT ZOT TOH HOH TOT TCO HOT
H 3.62 0.55 HIT TIT ZOH QOH ZCO ZCO QIT
T 3.70 0.38 TOT HOT QOH ZOH QOT QCO ZOT
Mg44Rh7; Zn39Fe11; Mg44Ir7
Z 6.68 0.18 ZIT ZOT ZOH ZCO QCO TCO TOT
T 6.78 0.20 TIT TOT TOH TCO ZCO HCO HOT
Q 3.78 0.57 QOT ZOT TOH HTT TOT TCO HOT
T 3.77 0.65 TOT HOT QOH ZOH QOT QCO ZOT
Zn13(Fe,Ni)2; Mg6Pd; Mg29Ir4
Z 6.75 0.15 ZIT ZOT ZOH ZCO QCO TCO TOT
Q 3.49 0.96 QOT ZOT TOH HTT TOT TCO HOT
T 3.67 0.69 TOT HOT QOH ZOH QOT QCO ZOT
Na6Tl; Zn91Ir11
Z 6.71 0.16 ZIT ZOT ZOH ZCO QCO TCO TOT
T 6.82 0.14 TIT TOT TOH TCO ZCO HCO HOT
Q 3.63 0.65 QOT ZOT TOH HTT TOT TCO HOT
H 3.79 0.42 HOT QOT ZOH TOH ZOT ZCO TOT
T 3.77 0.72 TOT HOT QOH ZOH HTT QCO ZOT
Li13Na29Ba19
Z 6.77 0.34 ZIT ZOT ZOH ZCO QCO TCO TOT
T 7.77 0.45 TIT TOT TOH TCO ZCO HCO HOT
Q 3.51 0.92 QOT ZOT TOH HTT TOT TCO HOT
H 3.83 0.76 HOT QOT ZOH TOH ZOT ZCO TOT
Al69Ta39
Z 6.75 0.14 ZIT ZOT ZOH ZCO QCO TCO TOT
Q 3.42 0.95 QOT ZOT TOH HTT TOT TCO HOT
H 3.62 0.66 HOT QOT ZOH HCO QTT ZCO TOT

[a] d=average distance. [b] s= standard deviation.
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We present this same data graphically in Figure 11. In this
figure, we plot the ratio of (cell axis length)/(average near-
est-neighbor distance), together with its corresponding stan-
dard deviation for all clusters of all 13 structures belonging
to the eight structure types. This figure shows clearly the

two apparent size ratios: a/(average distance) gives values of
either approximately 4 or 6. One of the primary goals for
the remainder of this paper will be to account for these
most common size ratios.

Diffraction of a single 54-cluster : We have seen there is a re-
lation between the atomic sites in the F4̄3m structures and
the 3D projected image of the 4D 600-cell. We now examine
how the fivefold symmetry operations of the 4D 600-cell are
retained as pseudo-symmetries in its 3D projection.
There are an enormous number of fivefold symmetries in

the full 4D 600-cell. If we recall that every pair of adjacent
vertices (i.e. , every bond) of the 600-cell is bisected by a
pentagonal face of the dual 120-cell, and that each of these
pentagonal faces has fivefold symmetry, we recognize that
every bond in the 600-cell defines a set of fivefold symmetry
operations. Before projection, all bonds have exact fivefold
symmetry.
After 3D projection, different bonds differ in the extent

to which they retain their fivefold symmetry. The bonds
nearest the center of projection retain the most of the origi-
nal fivefold symmetry. (Recall that the symmetry of the
exact center of the projection is perfectly preserved, and
that the further one travels from this center, the more im-
perfect the resultant images usually become.) In the 3D pro-
jection discussed in this paper, we have chosen the center of
the projection to be the center of one of the tetrahedral
cells of the 600-cell. There are six fivefold axes that lie near-
est this center: the six edges of the central tetrahedron. The
fivefold symmetry is best preserved for these six axes.
In Figure 12a, we redraw the 54-cluster so that one of the

six edges of its central tetrahedron is placed at the center of
the image. In Figure 12b, we consider this exact same orien-
tation, but keep only the bonds that appear as pentagons or
decagons in the projected image. It may be seen that 50 of
the 54 atoms lie either at the center of this view or on a pen-
tagon or decagon.

In Figure 12c,d, we show the perpendicular view of the
core atoms, and the individual pentagons. It may be seen
that there are four core atoms (Figure 12c) and five differ-
ent pentagons (Figure 12d). The structure of the so-called
decagon is more complex and is not shown in this figure. It
consists of 21 atoms with an approximate fivefold symme-
try.11

Plane waves and the 54-cluster : We now turn to the diffrac-
tion image of the 54-cluster. As yet, we have not placed the
cluster into a crystalline unit cell. Even so, we can generate
relevant images. Consider the Fourier transform of the 54-
cluster.12

Note that the constant scattering factor for each atom is
taken to be unity.13 To apply this Fourier transform, we need
to explicitly determine the 54 r!j coordinates. We consider

Figure 11. The standard deviation versus mean nearest-neighbor distance
in each experimental occurrence of the 54-cluster among the F4̄3m struc-
tures. Data is based on Table S2 of the Supporting Information.

Figure 12. Features of pseudo-fivefold symmetry in the linear projection
of a 54-cluster. a) A view of the 54-cluster along one of the bonds of its
central tetrahedron, b) the pentagons and the decagon within this unit,
and a perpendicular view of c) the four core atoms, and d) five penta-
gons. From the center outward, sites are shown in yellow, orange, red,
purple, and green. See Figure 8 for site names.

11 The so-called decagon could be viewed as five pentagons with four
defect sites, but we need not enter the full complexity of the decagon,
as our primary interest is the pseudo-tenfold diffraction symmetry
normal to the [110] direction. As readers familiar with diffraction
theory know, in such cases we need only consider the 2D projection of
atoms normal to the desired direction to calculate exact structure fac-
tors.[50] Figure 12b gives an adequate view of this 2D projected struc-
ture.

12 For those accustomed to seeing X-ray diffraction patterns, the use of
Fourier transforms here may seem unorthodox. The Fourier transforms
used in this paper resemble more closely the Fourier transforms used
to study clusters in the gas phase, and can be seen as the analogue of
diffraction patterns without the constraints of a unit cell. As in a dif-
fraction pattern, the k

!
vector corresponds to the direction and fre-

quency of plane waves running through the cluster, and the contours
to the degree to which atoms constructively interfere with the waves.

13 By taking the scattering factor of each atom to be unity, we do not
treat the coloring problem in this paper. We cannot expect the type of
4D to 3D projection in this paper to hold the key to the coloring prob-
lem, as evidenced by the different atomic site preferences in the small
and large 54-clusters throughout this family of structure types. While
the large clusters tend to consist mainly of larger and/or more electro-
negative atoms, the small clusters have no evident occupancy pattern.
Still, we expect that the answer to the coloring problem is closely relat-
ed to this projection method, and we plan to explore this point in our
subsequent work.
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both a linear and an intermediate projected 54-cluster.
Looking ahead to the actual crystal structure, we define an
IT�IT bond to run in the [1 1̄0] direction. We further consid-
er only those k

!
that are orthogonal to this direction. With

these givens, we can calculate the magnitude of Fk
! as a func-

tion of k
!
[Eq. (1)]. This is plotted in Figure 13. (Fig-

ure 13a,b are the diffraction images of linear and intermedi-
ate projected 54-clusters, respectively.)

F
k
! ¼

X54

j¼1
e2pi k
!
� r!j ð1Þ

As this figure shows, there are a few particularly large
peaks in the Fourier transform. Especially towards the
center of this diffraction image, these peaks appear in rings
of ten. Three such possible rings are shown in Figure 13. In
the innermost ring, labeled 4, all 10 reflections are clearly
visible. For the 6-ring, six of the ten peaks are clear for both
the linear and the intermediate projected 54-clusters. The
remaining four additional peaks can also be discerned in the

intermediate projected 54-cluster diffraction pattern. For the
10-ring of the linear projected 54-cluster, only the reflections
along the horizontal axis (the [k1k10] direction) are present.
By contrast, for the intermediate projected 54-cluster, the
10-ring reveals an additional set of four peaks. All of the
above peaks lie at similar orientations along the concentric
rings, orientations which correspond to a pseudo-tenfold dif-
fraction symmetry.
Let us consider real space pictures, based at first just on a

linear projected 54-cluster, which correspond to these major
peaks. In Figure 14a, we show a picture of the 54-cluster

with bonds represented as line segments. In Figure 14b–d,
we show this same cluster, but with all the bonds removed
for visual clarity. In addition, we show plane waves, the re-
ciprocal lattice vectors of which are (k1k̄10), partitioning the
54-cluster into 4, 6, and 10 segments, respectively. (More ex-
actly, the projected 54-cluster OC�OC distance is chosen to
be respectively 4, 6, or 10 times the plane-wave wave-
length.)
It can be seen that there is a correspondence between

these three (k1k̄10) plane waves and the projected 54-cluster.
In all three cases, the vertices of the 54-cluster lie near the
crests of the plane waves. These three wavelengths lead to
excellent intracluster constructive interference, and hence
strong diffraction peaks. In the case in which the projected
54-cluster OC�OC distance is ten times the wavelength
(Figure 14d), constructive interference is nearly ideal.

Figure 13. 2D cross-section of the Fourier transforms of a) a linear pro-
jection and b) an intermediate projection of the 54-cluster viewed along
the [1 1̄ 0] direction. These cross-sections contain points of the form
k1k1k3. IT-IT distances of 2.40 and 2.03 S were assumed in order that the
(k1k1̄0) planes divide the 54-cluster into k1 segments, as in Figure 14.
Both plots are divided into 12 equally spaced contours, in which redder
lines represent greater constructive interference, and bluer lines less.

Figure 14. a) A linear projection of the 54-cluster, shown with an OC�
OC distance equal to b) 4, c) 6, d) 10, e) 10/t, and f) 10/t2 (in which t is
the golden mean) spacings of plane waves whose reciprocal lattice vec-
tors are (k1k1̄0). Diagonal lines represent the crests of the respective
plane waves. The cluster achieves significant constructive interference
with the waves at each of the illustrated sizes.
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Numbers such as 4, 6, and 10 are of interest. In particular,
if we divide these numbers by two, they correspond to inte-
gers in the Fibonacci sequence (1, 1, 2, 3, 5, 8, …). The 54-
cluster has the remarkable property that interatomic spac-
ings are related to the Fibonacci sequence. This remarkable
property can be directly traced to the 600-cell itself.
The Fibonacci sequence is furthermore naturally connect-

ed to the golden mean (t= (1+
p
5)/2): ratios of adjacent

members of the Fibonacci sequence quickly converge to the
golden mean. In Figure 14b,c,e,f, we compare plane waves
for which the cluster is 6 and 4 times the wavelength to
plane waves for which the cluster is 10/t (6.18) and 10/t2

(3.82) times the wavelength, respectively. (We choose ratios
related to 10 because for this integer value, constructive in-
terference is already nearly ideal.) As Figure 14e,f show,
these two non-integer values have excellent constructive in-
terference.

We quantitatively evaluate the relation of the 10/t and 10/t2

wavelengths in the original Figure 13. Recalling that for
plane waves, the wavelength l determines the length of k

!

(l j k!j=1), we directly place onto Figure 13 circles, the radii
of which correspond to the plane waves labeled 10, 10/t,
and 10/t2 in Figure 14. The three rings labeled 10, 6, and 4 in
Figure 13 actually correspond to the 10, 10/t (6.18), and 10/
t2 (3.82) plane waves, respectively, of Figure 14. Re-exami-
nation of Figure 13a shows that the calculated peak maxima
lie almost exactly on the calculated ring positions. (By con-
trast, had we placed plane waves corresponding to wave-
lengths of either 4.00 or 6.00, we would have seen a signifi-
cant misalignment between ring sizes and diffraction peak
maxima.)
In Figure 13b, the illustrated 10-, 6-, and 4-rings were cre-

ated in an identical manner, but for an intermediate project-
ed 54-cluster.14 Comparison of Figure 13a,b shows that ideal
constructive interference depends much more on the values
10, 10/t, and 10/t2 than on the projection method used. It is
these wavelengths and the subtle regularities of the 600-cell,
rather than the projection method, that are responsible for
optimal intracluster constructive interference.
These facts are of central relevance to the paper. In par-

ticular, these results suggest that if one were to have a pair
of 54-clusters of different sizes, but with a size ratio between
clusters of either t or t2, one might have not just optimal in-
tracluster interference, but intercluster interference as well.
In Figure 15, we show two 54-clusters with an intercluster
size ratio of t.
As this figure shows, plane waves can constructively inter-

fere equally well for two different sized 54-clusters, the size
ratio of which is near the golden mean. Such pairs of differ-
ent sized clusters are more fully considered in the penulti-
mate section of this paper. For now, note that different sized
clusters are not just a hypothetical musing. Rather as we
have previously discussed, different sized 54-clusters the

size-ratios of which are near the golden mean are extremely
common in the F4̄3m family of structures.

3D Bravais space groups compatible with the 54-cluster : In
the previous sections of this paper, we found that a single
54-cluster has both Td and pseudo-fivefold symmetry. There
are six pseudo-fivefold axes, each running along one of the
edges of the inner tetrahedron (IT) of the 54-cluster. We
now determine the crystalline symmetry consequences of
the above statements.
First, we assume the symmetry of the actual crystal ema-

nates from the 54-cluster itself: it should be of no higher or
no lower symmetry than the 54-clusterFs Td symmetry. We
therefore require that the highest symmetry site of the crys-
tal is of Td symmetry. There are five space groups which
meet this requirement: P4̄3m, F4̄3m, I4̄3m, Pn̄3m, and
Fd̄3m. Happily, all the cubic structures which we know to
exhibit pseudo-fivefold symmetry along their h110i direc-
tions belong to one of these five space groups. These include
not just the structures that are the primary concern of this
paper, but also the three most complex of all cubic struc-
tures: Cd3Cu4 (F4̄3m),

[11] NaCd2 (Fd̄3m),
[10] and Mg2Al3

(Fd̄3m).[51,52]

The requirement that the highest site symmetry be Td not
only specifies the possible space groups, but also determines
the orientation of the 54-cluster within the cubic unit cell.
For a Td cubic unit cell, the 4̄ axes always run along the
h100i directions, while the threefold axes run in the h111i
directions. The edges of the inner tetrahedron define the m
setting (the third setting, the h110i directions). The edges of
the inner tetrahedron therefore must lie in the h110i direc-
tions.
As the edges of the inner tetrahedron are the best pre-

served pseudo-fivefold symmetry axes of the 54-cluster, the
most clear pseudo-fivefold symmetry axes lie along the six
h110i directions. This is the exact result that we set out to
rationalize at the beginning of this paper. Every indication
is therefore that the construction of the 4D 600-cell and its
projection, the 54-cluster, plays a critical role in the ob-
served pseudo-tenfold diffraction patterns.

Crystalline 54-cluster interference : However, we can go fur-
ther. Let us consider a single crystallographically inequiva-
lent 54-cluster, and let us place it into a cubic unit cell. As

Figure 15. Linear projections of two 54-clusters differing in size by a
factor of t, the golden mean, shown with plane waves, the reciprocal lat-
tice vectors of which are (k1k1̄0). Horizontal lines indicate the crests of
the plane waves. At these particular sizes, the two clusters can simultane-
ously achieve significant constructive interference.

14 In the intermediate 54-cluster, two IC atoms which lie along the [1 1̄ 0]
direction with respect to each other were used to define the 10, 10/t,
and 10/t2 plane-wave wavelengths.
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the crystal structures that inter-
est us are all F-centered, we
make the unit cell F-centered.
We now specify the size of the
cluster relative to the size of
the unit cell. As a measure of
the former, we consider the IT�
IT distance (as the 600-cell is a
Platonic solid, all nearest-neigh-
bor distances are originally the
same, and therefore all nearest-
neighbor distances initially
equal the IT�IT distance). For
the latter, we apply the a-axis
length.
We consider a ratio of a-axis/

IT�IT distances ranging in
value from 3 to 35, and calcu-
late across this range the dif-
fraction pattern. A few of these
results are illustrated in
Figure 16. (Figure 16 top and
bottom are the calculated dif-
fraction patterns for a linear
and an intermediate projected
54-cluster, respectively. The re-
sults presented in this figure
use the same delta-function-like
atomic form factors as were
used for the isolated 54-clus-
ters.) All ratios calculated ex-
hibit a pseudo-tenfold diffraction. Thus, the size ratio is not
a factor in the overall pseudo-fivefold symmetry (this is as
we would expect: the pseudo-fivefold symmetry is a conse-
quence of the finite 4D cluster, and is therefore independent
of 3D cell axis length).
However, even within the constraint of pseudo-fivefold

symmetry, there is an enormous variation in diffraction pat-
terns. We observe two trends. First, at the largest ratios, the
pseudo-tenfold diffraction peaks are distributed over a
number of neighboring hkl reflections, but at smaller ratios,
the pseudo-tenfold diffraction coalesces into single peaks. A
second distinction is also present. As Figure 16 shows, the
most intense peaks shift in their positions.
To aid our understanding of these shifts, we place directly

onto the diffraction images in Figure 16 a constant ring that
corresponds to the 4-diffraction ring previously calculated
(for the isolated 54-cluster). As Figure 16 shows, the actual
diffraction pattern fluctuates with respect to the isolated
cluster ring.
If the diffraction peaks of Figure 16 are not fully in

accord with the Fourier transform of the isolated cluster,
then there must be a less-than-ideal constructive interfer-
ence present in the diffraction pattern. Intra- and interclus-
ter planes must not be fully aligned. Constructive interfer-
ence can only be optimal when the diffraction peaks of
Figure 16 lie on the isolated 54-cluster ring positions.

Examination of data across the full range of calculated
sizes suggests that for some specific size ratios, there is opti-
mal agreement between isolated and crystalline 54-cluster
diffraction patterns. The two best ones are illustrated in Fig-
ure 16b,d. The first is found near a size ratio of six, the
second near the value of four (the specific optimal value
itself shifts somewhat depending on the method of projec-
tion). In both of these cases, intense reflections lie directly
on the illustrated ring.
A simple metric which could quantitatively evaluate what

the naked eye sees would be useful. Such a metric would
need two components. On the one hand, it would measure
the degree to which peaks coalesce. On the other hand, it
would measure the proximity of the coalesced peak to those
that were calculated for the isolated 54-cluster. Interestingly,
as pseudo-tenfold symmetry appears to play an equal role in
all the diffraction images, the desired metric need not mea-
sure tenfold symmetry.
A pithy metric proves cumbersome to find. We develop it

in two steps. First, we consider the 4-ring of the isolated 54-
cluster. Intracluster diffraction is optimal for points along
this ring. We now determine which hkl peaks lie nearest
these optimal values. To do so, we consider the reciprocal
lattice itself. The reciprocal lattice has vertices that corre-
spond to specific hkl, and edges (connections between
neighboring vertices) that might intersect the 4-ring. We

Figure 16. 2D (blue and red) and circular 1D (red) diffraction patterns for linear (top row) and intermediate
(bottom row) projections of the 54-cluster placed in an F-centered cubic cell, illustrating the dependence of
peak sharpness on the relative sizes of the unit cell and the cluster. Unit cell axes of a) 25 (linear) and 20 (in-
termediate), b) 5.9 (linear) and 6.7 (intermediate), c) 4.2 (linear) and 4.8 (intermediate), d) 3.6 (linear) and 4.2
(intermediate) times the IT�IT distance. A ring corresponding to peak maxima of an isolated 54-cluster (4-
ring of Figure 13) is shown as a black circle. For both types of projection, optimal peak sharpness and location
(vis-T-vis the 4-ring) is approximately six (panel b) or four (panel d) times the IT�IT distance.
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consider only those hkl the attached edges of which inter-
sect the 4-ring. The selected hkl are shown in red in
Figure 16.
At the base of each panel of Figure 16, we show the se-

lected diffraction peaks in a separate graph. These graphs
plot the intensities of the selected diffraction peaks as a
function of the angles to which they correspond along the
ring. As these figures show, for all size-ratios, the diffraction
patterns take on a pseudo-tenfold symmetry. There are ten
major peaks distributed symmetrically around the ring (six
of which are given in the basal pictures); each peak has a
number of satellite peaks.
We now establish the first half of the desired metric. We

divide the 1808 graphs into five cohorts of peaks, each corre-
sponding to a 368 range of peaks. We then select the stron-
gest peak in each cohort (its intensity is called I1), and take
its ratio with respect to the second strongest peak (the in-
tensity of which is I2). We calculate the geometric mean of
these ratios. As by symmetry, these five cohorts always con-
sist of just three sorts, we take the geometric mean of just
the three symmetry-inequivalent cohorts. This geometric
mean provides a measure of how peaked any given diffrac-
tion pattern is.
We now consider the actual position of these strongest

five peaks relative to the ring itself. We calculate the dis-
tance between the three distinct most intense peaks and a
set of three points lying on the illustrated ring with ideal
tenfold symmetry, and take the geometric mean of these dis-
tances. We now multiply these two geometric means togeth-
er. This product can be thought of as a measure of the
accord between intra- and intercluster constructive interfer-
ence.
In Figure 17a,b, we plot this product for both a linear and

an intermediate projected 54-cluster. In the case of linear
projection, there are two strong and sharp peaks at size
ratios of 3.9 and 5.8. For intermediate projection, the corre-
sponding values are 4.0 and 6.9. For ease of comparison, we
also replot, in Figure 17c, the data based on the actual crys-
tal structures. As we have previously shown, experimentally
there are two observed size ratios, the first mainly ranging
from 3.5–3.8, the second more sharply peaked at values
around 6.6–6.8.
Both projected clusters and the experimental data agree

that there are two optimal size ratios, one near 4 and the
other near 6. The observed experimental range lies some-
where between the values obtained from the linear and the
intermediate projection methods. Perhaps not too surprising,
in the case of the smaller cluster (the clusters with size
ratios of six), the intermediate projection fares better at
quantitative rationalization. For the smaller cluster, the in-
teratomic distances are metal bonds themselves. Intermedi-
ate projection, with its more constant bond lengths, is there-
fore more reasonable than linear projection (see Table 2).
In some ways, however, the results of Figure 17 appear

surreal. The calculated results are derived solely from geo-
metrical considerations, the mathematical construction of
clusters with optimal constructive fivefold diffraction, while

the experimental results are presumably due to the optimi-
zation of the Schrçdinger equation. The agreement between
theory and experiment is therefore curious.

Fivefold symmetry of multiple 54-clusters : In previous sec-
tions of this paper, we found that only at specific length
scales does the 54-cluster have its most constructive intra-
cluster interference (Figure 14a–c). We have further suggest-
ed that two clusters with different length scales can con-
structively interfere with one another if their length scales
are related by the golden mean (Figure 15).
Crystallographic data for the F4̄3m family of structures

(Figure 17c) bears out these theoretical constructions with
numerous 54-clusters at two predominant length scales. The
length scale of the smaller 54-clusters is dictated by metal
bond lengths; the length scale of the larger clusters is larger
by a factor of roughly the golden mean. Experimental re-
sults are therefore in good agreement with theoretical con-
jecture.
However, this agreement by itself does not rigorously

prove the conjecture. In this penultimate section of the
paper, we explicitly calculate the diffraction pattern of two
distinct clusters within one unit cell. We consider especially
the case in which the two different clusters are centered at
different points, as this seemingly could most easily violate
real-space pseudo-fivefold symmetry.
As we consider here for the first time the diffraction of

two 54-clusters, we must for the first time consider interfer-
ence effects between two clusters not related by translation-
al symmetry. We need to take into account the orientation
of 54-clusters with respect to each other. The 54-cluster ori-

Figure 17. The combined metric (see text) which assesses both the dif-
fraction peak sharpness and peak positions relative to the 4-ring (see
Figure 13) for the a) linear and b) intermediate projections of F-centered
cubic-celled 54-clusters, plotted versus the relative size of the unit cell to
the cluster. c) The frequency of each size of 54-cluster in experimental
crystal structures. The two distinct ranges of theoretically optimal cluster
sizes are matched by experiment.
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entation is an issue, because this cluster has Td symmetry.
There are two ways to align a tetrahedron with respect to
the symmetry of a cubic unit cell, and therefore two ways to
orient the 54-cluster. Considering the central IT tetrahedron
of the 54-cluster, we can have one of its triangular faces
pointing along either the [111] or [1̄ 1̄ 1̄] direction. We shall
call the former orientation regular (r or R), and the latter
orientation inverted (i or I).
We may then develop the following nomenclature: small

and large Roman letters will signify respectively small- and
large-sized 54-clusters. R would refer to a large-scaled 54-
cluster with the regular orientation. Combining these names
with the Z, Q, H, and T notation, we can generate an effi-
cient naming scheme. Qi for example will specify a small-
scaled 54-cluster with the inverted orientation, centered at
(14,
1
4,
1
4).
In Figure 18a, we consider one regular and one inverted

cluster located at respectively Z and Q. (We choose Z and
Q because, as Table 4 shows, these are the most common
cluster centers.) We calculate the diffraction pattern for cell-

to-cluster size ratios ranging from 3 to 35 using the product
established in the preceding section to assess the diffraction
pattern. As Figure 18a shows, there are a number of optimal
size ratios of the two clusters. The globally optimal ratio is
for one cluster to have a size ratio of six (i.e. , r or i), while
the other has a size-ratio of four (i.e., R or I). The second
most optimal ratio is for both clusters to have size ratios of
four.
The figure shows two identical globally optimal peaks. We

can apply our nomenclature to verify that they should be
identical. The first of the two optimal peaks corresponds to
the pair of 54-clusters Zr·QI, while the second is for two
clusters ZR·Qi. Now consider the effect on the first two
clusters if they are inverted about the point (18,

1
8,
1
8). In this op-

eration, the Z and Q sites switch labels. Furthermore, r and
I convert to i and R, respectively. Thus, Zr·QI becomes
Qi·ZR, and the aforementioned peaks are symmetry-equiva-
lent. (Note Qi·ZR=ZR·Qi.)
We place, directly on the figure, crosses that correspond

to the experimentally determined pairs of clusters. (In addi-
tion to pairs of clusters centered at Z and Q, we also include
pairs of clusters located at Q and H, H and T, or T and Z
sites. We do so because the calculated contour maps are
equally valid for all pairs of neighboring centers.) Agree-
ment between theory and experiment is good. The largest
number of peaks is found at Zr·QI and ZR·Qi. In addition,
there are a few experimentally observed points that lie near
the second most optimal geometry, ZR·QI, and three points
at Zr·Qi (the presence of these last points is the subject of
the last paragraph in this section).
We now turn to the cases of Zr·Qr, Zr·QR, ZR·Qr, and

ZR·QR. We examine these cases in light of our earlier ob-
servations for the Zr·QI peaks. We first note two geometri-
cal issues. First, we observe that one cannot have Zr and ZR
clusters simultaneously in the same crystal structure. This is
because the ZIT atom provides the IT site of the Zr cluster,
but ZOT provides not just the OT site of the Zr cluster but
the IT site of the ZR cluster. In a 54-cluster, the IT tetrahe-
dron has one orientation, while the OT tetrahedron has the
opposite orientation. Thus the ZOT site cannot simultane-
ously be the OT site of a Zr cluster and the IT site of a ZR
cluster.
Second, we note Zr and Zi are not compatible. In Zr, we

would have a regularly oriented IT and therefore an invert-
ed OT, while in Zi we would have an inverted IT and regu-
larly oriented OT. Zr and Zi are not compatible, as an in-
verted (or regular) OT and an inverted (or regular) IT
would lie too close to one another to be simultaneously
present. (For a similar reason, QI and QR are not found to-
gether.)
These two geometrical observations place considerable

constraints on the Zr·Zr, Zr·ZR, ZR·Zr, and ZR·ZR peaks.
As we have seen in Figure 18a, the Zr·QI configuration is
quite common. If the crystal in question has the Zr·QI con-
figuration, then the presence of Zr and QI rules out the pre-
sences of respectively Zi or ZR and Qi or QR. (Qi and QI
can not be simultaneously present for the same reason Zr

Figure 18. Contour plots of the combined metric (see text) which assesses
both diffraction peak sharpness and peak positions relative to the 4-ring
(see Figure 13) for F-centered cubic unit cells containing the intermediate
projections of two 54-clusters centered respectively at Z and Q, a) with
clusters with inverted orientation with respect to each other and b) with
the same orientation. Both plots are divided into seven equally spaced
contours, in which redder lines represent larger values, and bluer lines
smaller values. Crosses indicate experimentally observed arrangements of
pairs of clusters. See text for discussion.
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and ZR can not be simultaneously present.) However ZI
and Qr are compatible with Zr and QI. Since we are at this
point interested in a pair of clusters with the same orienta-
tion, the only admissible possibilities would be Zr·Qr and
ZI·QI. We further note that following inversion, ZI·QI be-
comes ZR·QR.
We therefore expect that as Zr·QI is quite common, the

two most common orientations among Zr·Qr, Zr·QR,
ZR·Qr, and ZR·QR would be Zr·Qr and ZR·QR. The ex-
perimental data of Figure 18b confirm this hypothesis. The
majority of experimental data is for these two cluster pairs,
with a few Zr·QR cluster pairs also present.
The experimental data is therefore compatible with the

theoretical calculations. We end this section, however, with
one caveat. The theoretical calculations do not unambigu-
ously anticipate the experimental results. There is one addi-
tional possibility compatible with theory that is not most
commonly observed. It could have been that Zr·QR (rather
than Zr·QI) was most commonly observed. ZI and Qi are
compatible with Zr·QR. As a consequence, ZI·QR and
Zr·Qi would also have been seen. This second possibility is
what allows for the experimental pairs that lie off the global
maxima of Figure 18.

Conclusions

In this paper, we have shown that the pseudo-fivefold sym-
metries of a number of complex solid-state compounds can
be understood by considering the higher dimensional Pla-
tonic solid, the 600-cell. In the preface to his classic work on
higher dimensional Platonic solids, Regular Polytopes,
H. S. M. Coxeter talks of the dazzling beauty of 4D solids.
He quotes Lobatschewsky, who wrote, “there is no branch
of mathematics, however abstract, which may not some day
be applied to phenomena of the real world.”[46] Solid-state
chemists are blessed that it is in our field in which such daz-
zling and beautiful mathematical constructs as the 600-cell
can take hold.
In some ways it is not an accident. One of the central con-

cerns of solid-state chemists is the filling of space with poly-
hedra. Furthermore, most binary compounds are metals, and
their structures are often built up of tetrahedra. The com-
plexity of many crystal structures is a consequence of these
statements. For, as we know, it is not possible to fill space
solely with regular tetrahedra.
We may think of the intrusion of the 4D 600-cell into

solid-state chemistry as a consequence of the above. Just as
the exterior of a 3D polyhedron is a curved 2D surface, the
exterior of a 4D polyhedroid is a curved 3D volume.15 But
what a volume! Every vertex is in the center of an icosahe-
dron, each icosahedron is composed of 20 perfectly regular

tetrahedra, and all faces of all tetrahedra lie on the face of
an adjacent tetrahedron. Were such an object to exist in or-
dinary 3D space, we would reasonably expect that there
would be numerous phases which would adopt its structure.
Even in curved space, we can imagine (and we hope in this
paper have shown) such a geometrical object is of use.
However, at the same time, we view the 600-cell as just a

point of departure. We suspect its point group and represen-
tations of its point group will also play a significant role in
the understanding of complex intermetallic structures. The
point group of the 600-cell has 14400 elements; its irreduci-
ble representations are of a complexity far beyond those en-
countered in 3D point groups. The utility of the point group
and its representations in simplifying and classifying solu-
tions to the Schrçdinger equation is well known.
The 600-cell is just one of many geometrical objects that

belong to this point group. In a previous paper, we have de-
scribed an edge-capped stella quadrangula, the edges of
which are decorated with new atoms.[39] In an analogous
manner, we can envision decorated 600-cells. However, the
600-cell point group may have more far-reaching consequen-
ces; just as regular quasicrystals have Ih point-group symme-
try,[1] we may envision new quasicrystals that belong to the
600-cell point group.[53] Such further constructs seem worthy
of investigation.

Appendix

Linear projection of the 16-cell : The eight vertices of the 16-cell can be
described in Cartesian coordinates by (�1,0,0,0), (0,�1,0,0), (0,0,�1,0),
and (0,0,0,�1). In 4D, each vertex is distance 1 from the origin, and has
six nearest neighbors at a distance of

p
2. To find the matrix that creates

a linear 3D projection of the 16-cell, we must define the direction of pro-
jection. As discussed earlier in this article, we chose the direction of pro-
jection to be orthogonal to the central tetrahedron (thus preserving the
symmetry of this tetrahedron). We arbitrarily chose the central tetrahe-
dron to have vertices at (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1). We
would like these four points to be projected onto the vertices of a 3D tet-
rahedron, the vertices of which we (again somewhat arbitrarily) place at
(�1,�1,�1), (�1,1,1), (1,�1,1), and (1,1,�1). The desired projection
matrix M16 can now be found by solving the system of linear equations
represented by

The solution to this system of equations is

When the matrix M16 is applied to the 4D coordinates of the eight verti-

ces of the 16-cell, the result is a 3D projection with Td symmetry.
15 Both the 2D exterior surface of the 3D polyhedra and the 3D exterior
volume of a 4D polyhedroid are curved, as the individual exterior ele-
ments (respectively 2D polygons and 3D polyhedra) are canted with
respect to each other so that they can wrap around the respectively 3D
and 4D spaces.
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The attentive reader may notice that this 3D projection of the 16-cell is
actually a cube. Therefore, while our method did not require it, this pro-
jection has Oh symmetry, of which Td is a subgroup. While one of course
does not need four dimensions to generate a cube, this method can be
applied to more complicated 4D polyhedroids for which projection
proves more useful.

Linear projection of the 600-cell : We now use this same method to gener-
ate a 3D projection of the 600-cell with Td symmetry. The 120 vertices of
the 600-cell can be described in Cartesian coordinates by (� 12,�

1
2,�

1
2,�

1
2)

(16 vertices), (0,0,0,�1) (8 vertices), and all even permutations of
1=2 ACHTUNGTRENNUNG(�1,�t,�1t,0) (96 vertices, t is the golden mean). In 4D, each vertex is
distance 1 from the origin, and has twelve nearest neighbors at a distance
of 1t. We arbitrarily chose the central tetrahedron to consist of the four
mutually nearest neighboring vertices at (1,0,0,0), 1=2(t,0,

1
t,1),

1=2(t,1,0,
1
t),

and 1=2(t,
1
t,1,0). We would again like these four points to be projected

onto (�1,�1,�1), (�1,1,1), (1,�1,1), and (1,1,�1) in 3D space. The de-
sired projection matrix M600 can now be found by solving the system of
linear equations represented by

The solution to this system of equations is

Applying this matrix M600 to the 4D coordinates of the 600-cell produces
a 3D projection of the polyhedroid with Td symmetry. The full list of 4D
and 3D coordinates of the 600-cell under this linear projection are given
in the Supporting Information. In the second column of Table 5 are the
3D coordinates of the seven distinct sites in the 54-cluster discussed in
this paper, as projected linearly from the 600-cell.

Stereographic and intermediate projections of the 600-cell : Having al-
ready found the Td linear projection of the 600-cell, we must stretch or
shrink regions of that projection in order to generate the stereographic
and intermediate projections. As with the linear projection, we would
like the vertices (1,0,0,0), 1=2(t,0,

1
t,1),

1=2(t,1,0,
1
t), and

1=2(t,
1
t,1,0) to form a

tetrahedron at the center of these projections. This means positioning the
“light” opposite the center of this tetrahedron, in the direction {�(t+

1,t�1,t�1,t�1)}/(2p2). We define g as the distance from the point on
the 600-cell at the center of the projection to the “light”, in 600-cell di-
ameters. Thus, a stereographic projection corresponds to g=1, the inter-
mediate projection we use in this paper corresponds to g =1.9, and a
linear projection corresponds to g=1. We can now calculate the project-

ed 3D coordinates (b1,b2,b3) of any 4D vertex (a1,a2,a3,a4) for any value of
g.

As a final step, not shown in the above expression, we multiply all the
3D coordinates by a constant such that the IT coordinates are
(�1,�1,�1), (�1,1,1), (1,�1,1), and (1,1,�1), so they can be more easily
compared. In the third and fourth columns of Table 5 are the seven dis-
tinct sites in the 54-cluster, as projected from the 600-cell with g =1 (ster-
eographic) and g=1.9 (intermediate). As expected, the outer layers of
the cluster are more stretched out as the projection moves closer to ster-
eographic.

Acknowledgements

This research was supported by the National Science Foundation through
grant DMR-0504703. We thank Dr. Ji Feng for suggesting stereographic
projection. We thank Aaron Bloomfield, Julie Fichot, and Adrian So for
their separate work in our laboratory on the Li21Si5 structure. We thank
Roald Hoffmann for his support through every stage of this work: from
discussions over the ideas behind this paper to the final preparation of
the manuscript.

[1] C. Janot, Quasicrystals: A Primer, 2nd ed., Clarendon, Oxford, 1994.
[2] G. Friedel, C. R. Hebd. Seances Acad. Sci. 1913, 157, 1533–1536.
[3] J. Kasper, Theory of Alloy Phases, American Society of Metals,
Cleveland, OH, 1956.

[4] F. Frank, J. Kasper, Acta Crystallogr. 1958, 11, 184–190.
[5] F. Frank, J. Kasper, Acta Crystallogr. 1959, 12, 483–499.
[6] W. Pearson, C. Shoemaker, Acta Crystallogr. Sect. B 1969, 25, 1178–
1183.

[7] C. Shoemaker, D. Shoemaker, Acta Crystallogr. Sect. B 1972, 28,
2957–2965.

[8] Y. Yarmolyuk, P. Kripyakevich, Kristallografiya 1974, 19, 539–545.
[9] D. Shoemaker, C. Shoemaker, Acta Crystallogr. Sect. B 1986, 42, 3–
11.

[10] S. Samson, Nature 1962, 195, 259–262.
[11] S. Samson, Acta Crystallogr. 1967, 23, 586–600.
[12] S. Samson, D. Hansen, Acta Crystallogr. Sect. B 1972, 28, 930–935.
[13] S. Samson, Acta Crystallogr. Sect. B 1972, 28, 936–945.
[14] V. Khare, N. Lalla, R. Tiwari, O. Srivastava, J. Mater. Res. 1995, 10,

1905–1912.
[15] C. Dong, Philos. Mag. A 1996, 73, 1519–1528.
[16] V. Demange, J. Ghanbaja, F. Machizaud, J. Dubois, Philos. Mag.

2005, 85, 1261–1272.
[17] H. Nyman, S. Andersson, Acta Crystallogr. Sect. A 1979, 35, 580–

583.
[18] H. Nyman, S. Andersson, Acta Crystallogr. Sect. A 1979, 35, 934–

937.
[19] B. Hyde, S. Andersson, Inorganic Crystal Structures, Wiley, New

York, NY, 1989.
[20] J.-F. Sadoc, J. Phys. Let. 1983, 44, L707–L715.
[21] J.-F. Sadoc, R. Mosseri, Geometrical Frustration, Cambridge Univer-

sity Press, Cambridge, UK, 1999.
[22] P. Villars, L. Calvert, PearsonEs Handbook of Crystallographic Data

for Intermetallic Phases, 2nd ed.,
ASM International, Materials
Park, OH, 1991.

[23] R. Ramirez, R. Nesper, H.-G.
von Schnering, Z. Naturforsch. A.
1986, 41, 1267–1282.

[24] R. Nesper, H.-G. von Schnering,
J. Solid State Chem. 1987, 70, 48–
57.

[25] A. Johansson, S. Westman, Acta
Chem. Scand. 1970, 24, 3471–
3479.

Table 5. 3D coordinates of various projections of the 600-cell.

Cluster site Linear (g=1) Stereographic (g=1) Intermediate (g =1.9)

IT (�1.000,�1.000,�1.000) (�1.000,�1.000,�1.000) (�1.000,�1.000,�1.000)
OT (1.618,1.618,1.618) (1.740,1.740,1.740) (1.679,1.679,1.679)
OH (0.000,0.000,3.236) (0.000,0.000,3.650) (0.000,0.000,3.439)
CO (�0.618,�2.618,�2.618) (�0.757,�3.207,�3.207) (�0.683,�2.894,�2.894)
IC (1.618,1.618,3.618) (2.302,2.302,5.147) (1.914,1.914,4.279)
MC (�4.236,�1.000,�1.000) (�6.694,�1.580,�1.580) (�5.236,�1.236,�1.236)
OC (�2.618,�2.618,�2.618) (�4.442,�4.442,�4.442) (�3.329,�3.329,�3.329)

Chem. Eur. J. 2008, 14, 3908 – 3930 G 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org 3929

FULL PAPERIntermetallic Phases

http://dx.doi.org/10.1107/S0365110X58000487
http://dx.doi.org/10.1107/S0365110X58000487
http://dx.doi.org/10.1107/S0365110X58000487
http://dx.doi.org/10.1107/S0365110X59001499
http://dx.doi.org/10.1107/S0365110X59001499
http://dx.doi.org/10.1107/S0365110X59001499
http://dx.doi.org/10.1107/S0567740869003694
http://dx.doi.org/10.1107/S0567740869003694
http://dx.doi.org/10.1107/S0567740869003694
http://dx.doi.org/10.1107/S0567740872007289
http://dx.doi.org/10.1107/S0567740872007289
http://dx.doi.org/10.1107/S0567740872007289
http://dx.doi.org/10.1107/S0567740872007289
http://dx.doi.org/10.1107/S0108768186098671
http://dx.doi.org/10.1107/S0108768186098671
http://dx.doi.org/10.1107/S0108768186098671
http://dx.doi.org/10.1038/195259a0
http://dx.doi.org/10.1038/195259a0
http://dx.doi.org/10.1038/195259a0
http://dx.doi.org/10.1107/S0365110X67003251
http://dx.doi.org/10.1107/S0365110X67003251
http://dx.doi.org/10.1107/S0365110X67003251
http://dx.doi.org/10.1557/JMR.1995.1905
http://dx.doi.org/10.1557/JMR.1995.1905
http://dx.doi.org/10.1557/JMR.1995.1905
http://dx.doi.org/10.1557/JMR.1995.1905
http://dx.doi.org/10.1080/01418619608242999
http://dx.doi.org/10.1080/01418619608242999
http://dx.doi.org/10.1080/01418619608242999
http://dx.doi.org/10.1080/14786430500037049
http://dx.doi.org/10.1080/14786430500037049
http://dx.doi.org/10.1080/14786430500037049
http://dx.doi.org/10.1080/14786430500037049
http://dx.doi.org/10.1107/S0567739479001364
http://dx.doi.org/10.1107/S0567739479001364
http://dx.doi.org/10.1107/S0567739479001364
http://dx.doi.org/10.1107/S0567739479002084
http://dx.doi.org/10.1107/S0567739479002084
http://dx.doi.org/10.1107/S0567739479002084
http://dx.doi.org/10.1016/0022-4596(87)90176-9
http://dx.doi.org/10.1016/0022-4596(87)90176-9
http://dx.doi.org/10.1016/0022-4596(87)90176-9
www.chemeurj.org


[26] S. Thimmaiah, K. Richter, S. Lee, B. Harbrecht, Solid State Sci.
2003, 5, 1309–1317.

[27] L. Arnberg, A. Jonsson, S. Westman, Acta Chem. Scand. Ser.A 1976,
30, 187–192.

[28] M. Booth, J. Brandon, R. Brizard, C. Chieh, W. Pearson, Acta Crys-
tallogr. Sect. B 1977, 33, 30–36.

[29] L. Westin, Chem. Scr. 1971, 1, 127–135.
[30] A. Koster, J. Schoone, Acta Crystallogr. Sect. B 1981, 37, 1905–1907.
[31] L. Westin, L.-E. Erdshammar, Acta Chem. Scand. 1972, 26, 3619–

3626.
[32] S. Lidin, M. Jacob, A.-K. Larsson, Acta Crystallogr. Sect. C 1994, 50,

340–342.
[33] F. Bonhomme, K. Yvon, J. Alloys Compd. 1995, 227, L1–L3.
[34] W. Hornfeck, S. Thimmaiah, S. Lee, B. Harbrecht, Chem. Eur. J.

2004, 10, 4616–4626.
[35] V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon, Angew. Chem.

2006, 118, 6197–6200; Angew. Chem. Int. Ed. 2006, 45, 6051–6053.
[36] S. Mahne, B. Harbrecht, J. Alloys Compd. 1994, 203, 271–279.
[37] A. Bradley, P. Jones, J. Inst. Met. 1933, 51, 131–162.
[38] C. Gazzara, R. Middleton, R. Weiss, E. Hall, Acta Crystallogr. 1967,

22, 859–862.
[39] R. Berger, S. Lee, R. Hoffmann, Chem. Eur. J. 2007, 7852–7863.
[40] T. Nasch, W. Jeitschko, J. Solid State Chem. 1999, 143, 95–103.

[41] M. Fornasini, B. Chabot, E. Parth\, Acta Crystallogr. Sect. B 1978,
34, 2093–2099.

[42] Cerius2, version 3.8, Molecular Simulations, San Diego, CA, 1998.
[43] H. Manning, Geometry of Four Dimensions, Macmillan, New York,

NY, 1914.
[44] E. Jouffret, TraitF ElFmentaire de GFomFtrie G Quatre Dimensions et

Introduction G la GFomFtrie G n-Dimensions, Gauthier-Villars, Paris,
1903.

[45] I. Stringham, Am. J. Math. 1880, 3, 1–14.
[46] H. Coxeter, Regular Polytopes, 3rd ed., Dover, New York, NY, 1973.
[47] M. Kl\man, J.-F. Sadoc, J. Phys. Lett. 1979, 40, L569–L574.
[48] D. Nelson, M. Widom, Nucl. Phys. B 1984, 240, 113–139.
[49] T. Banchoff, Beyond the Third Dimension ; Scientific American Li-

brary, New York, NY, 1990.
[50] M. Ladd, R. Palmer, Structure Determination by X-ray Crystallogra-

phy, 2nd ed., Plenum, New York, NY, 1985.
[51] S. Samson, Acta Crystallogr. 1965, 19, 401–413.
[52] M. Feuerbacher, Z. Kristallogr. 2007, 222, 259–288.
[53] V. Elser, N. Sloane, J. Phys. A 1987, 20, 6161–6168.

Received: September 5, 2007
Published online: March 17, 2008

www.chemeurj.org G 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Chem. Eur. J. 2008, 14, 3908 – 39303930

S. Lee et al.

http://dx.doi.org/10.1016/S1293-2558(03)00178-X
http://dx.doi.org/10.1016/S1293-2558(03)00178-X
http://dx.doi.org/10.1016/S1293-2558(03)00178-X
http://dx.doi.org/10.1016/S1293-2558(03)00178-X
http://dx.doi.org/10.1107/S0567740877002556
http://dx.doi.org/10.1107/S0567740877002556
http://dx.doi.org/10.1107/S0567740877002556
http://dx.doi.org/10.1107/S0567740877002556
http://dx.doi.org/10.1107/S056774088100753X
http://dx.doi.org/10.1107/S056774088100753X
http://dx.doi.org/10.1107/S056774088100753X
http://dx.doi.org/10.1107/S0108270193008650
http://dx.doi.org/10.1107/S0108270193008650
http://dx.doi.org/10.1107/S0108270193008650
http://dx.doi.org/10.1107/S0108270193008650
http://dx.doi.org/10.1016/0925-8388(95)01673-2
http://dx.doi.org/10.1016/0925-8388(95)01673-2
http://dx.doi.org/10.1016/0925-8388(95)01673-2
http://dx.doi.org/10.1002/chem.200400059
http://dx.doi.org/10.1002/chem.200400059
http://dx.doi.org/10.1002/chem.200400059
http://dx.doi.org/10.1002/chem.200400059
http://dx.doi.org/10.1002/ange.200602137
http://dx.doi.org/10.1002/ange.200602137
http://dx.doi.org/10.1002/ange.200602137
http://dx.doi.org/10.1002/ange.200602137
http://dx.doi.org/10.1002/anie.200602137
http://dx.doi.org/10.1002/anie.200602137
http://dx.doi.org/10.1002/anie.200602137
http://dx.doi.org/10.1016/0925-8388(94)90746-3
http://dx.doi.org/10.1016/0925-8388(94)90746-3
http://dx.doi.org/10.1016/0925-8388(94)90746-3
http://dx.doi.org/10.1107/S0365110X67001689
http://dx.doi.org/10.1107/S0365110X67001689
http://dx.doi.org/10.1107/S0365110X67001689
http://dx.doi.org/10.1107/S0365110X67001689
http://dx.doi.org/10.1006/jssc.1998.8091
http://dx.doi.org/10.1006/jssc.1998.8091
http://dx.doi.org/10.1006/jssc.1998.8091
http://dx.doi.org/10.1107/S0567740878007505
http://dx.doi.org/10.1107/S0567740878007505
http://dx.doi.org/10.1107/S0567740878007505
http://dx.doi.org/10.1107/S0567740878007505
http://dx.doi.org/10.2307/2369441
http://dx.doi.org/10.2307/2369441
http://dx.doi.org/10.2307/2369441
http://dx.doi.org/10.1016/0550-3213(84)90281-5
http://dx.doi.org/10.1016/0550-3213(84)90281-5
http://dx.doi.org/10.1016/0550-3213(84)90281-5
http://dx.doi.org/10.1107/S0365110X65005133
http://dx.doi.org/10.1107/S0365110X65005133
http://dx.doi.org/10.1107/S0365110X65005133
http://dx.doi.org/10.1088/0305-4470/20/18/016
http://dx.doi.org/10.1088/0305-4470/20/18/016
http://dx.doi.org/10.1088/0305-4470/20/18/016
www.chemeurj.org

